
Fast Generation of Random Spanning Trees
and the Effective Resistance Metric

Jakub Tarnawski

joint work with Aleksander Mądry and Damian Straszak

EPFL, Lausanne, Switzerland
University of Wrocław, Poland

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Problem: given an undirected graph G = (V ,E),
sample a spanning tree T uniformly at random.

Notation

T (G): set of spanning trees of G

Output every tree T with prob. 1/|T (G)|.

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Remark: |T (G)| can be as large as nn−2.

Matrix-tree-theorem methods
O(mnω) (Guenoche 1983)
O(nω) (Colbourn et al. 1996)

Random-walk methods
O(mn) (Aldous 1990, Broder 1989)
Õ(m

√
n) (Kelner-Mądry 2009)

Õ(m4/3) (this work)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Remark: |T (G)| can be as large as nn−2.

Matrix-tree-theorem methods
O(mnω) (Guenoche 1983)
O(nω) (Colbourn et al. 1996)

Random-walk methods
O(mn) (Aldous 1990, Broder 1989)
Õ(m

√
n) (Kelner-Mądry 2009)

Õ(m4/3) (this work)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Remark: |T (G)| can be as large as nn−2.

Matrix-tree-theorem methods (good for dense graphs)
O(mnω) (Guenoche 1983)
O(nω) (Colbourn et al. 1996)

Random-walk methods (good for sparse graphs)
O(mn) (Aldous 1990, Broder 1989)
Õ(m

√
n) (Kelner-Mądry 2009)

Õ(m4/3) (this work)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Remark: |T (G)| can be as large as nn−2.

Matrix-tree-theorem methods (good for dense graphs)
O(n3.37) (Guenoche 1983)
O(n2.37) (Colbourn et al. 1996)

Random-walk methods (good for sparse graphs)
O(n2.00) (Aldous 1990, Broder 1989)
Õ(n1.50) (Kelner-Mądry 2009)

Õ(n1.33) (this work)

assuming m = O(n).
Fastest known algorithm for m ¬ O(n1.5).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

Theorem (Aldous 1990, Broder 1989)

The distribution of T is uniform on T (G).

Time = O(cover time) = O(mn).
Question: do we need to simulate this process in full?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

Theorem (Aldous 1990, Broder 1989)

The distribution of T is uniform on T (G).

Time = O(cover time) = O(mn).

Question: do we need to simulate this process in full?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

Theorem (Aldous 1990, Broder 1989)

The distribution of T is uniform on T (G).

Time = O(cover time) = O(mn).
Question: do we need to simulate this process in full?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Improving upon O(mn)
(Kelner-Mądry, FOCS 2009)

First step: find a bad example.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Improving upon O(mn)
(Kelner-Mądry, FOCS 2009)

First step: find a bad example.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

1 2 3 4 5 6 7 8 9

cov(G) = Θ(n2)

Out of the O(nm) steps of the walk, we only care about n − 1
(those that visit a new vertex).

Issue: too much walking over already-explored parts.
(We gain no new information this way.)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

1 2 3 4 5 6 7 8 9

cov(G) = Θ(n2)

Out of the O(nm) steps of the walk, we only care about n − 1
(those that visit a new vertex).

Issue: too much walking over already-explored parts.
(We gain no new information this way.)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

1 2 3 4 5 6 7 8 9

Plan:

after we cover a blue subgraph we don’t want to traverse it
anymore

whenever we return there, we’d rather just know through
which edge we will exit, and exit (shortcutting the walk)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

1 2 3 4 5 6 7 8 9

Requirements:

we want to keep the cover time of each blue subgraph low

walking the red edges is costly – we want to reduce their
number

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

1 2 3 4 5 6 7 8 9

Fact (Leighton, Rao 1999)

Can partition G into regions such that:

diameters of regions are small (
√
m),

number of cut edges is small (
√
m).

Walking over each region until it is covered takes Õ(m3/2)
steps in total.

Walking the red edges until G is covered takes Õ(m3/2) steps.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

v

Task: for a vertex v from the region and an edge e from the
region’s boundary, compute Pv (e): probability that a walk started
at v will exit the region through e.

This can be done using electrical flows and fast Laplacian solvers,
also in time Õ(m3/2).

Theorem (Kelner, Mądry 2009)

One can sample a uniformly random spanning tree in time
Õ(m3/2). Can be improved to Õ(m

√
n).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

v

Task: for a vertex v from the region and an edge e from the
region’s boundary, compute Pv (e): probability that a walk started
at v will exit the region through e.

This can be done using electrical flows and fast Laplacian solvers,
also in time Õ(m3/2).

Theorem (Kelner, Mądry 2009)

One can sample a uniformly random spanning tree in time
Õ(m3/2). Can be improved to Õ(m

√
n).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Improving upon Õ(m
√
n)

(this work)

First step: find a bad example.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Improving upon Õ(m
√
n)

(this work)

First step: find a bad example.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Diameter: Θ(
√
n)

Cover time: Θ(n3/2) – Kelner-Mądry gives no improvement
over simple random-walk algorithm

No nice cut: any cut cuts either at least
√
n edges or leaves

regions of diameter at least
√
n

Source of problem: G1 and G2
are far away from each other
have large min-cut

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Diameter: Θ(
√
n)

Cover time: Θ(n3/2) – Kelner-Mądry gives no improvement
over simple random-walk algorithm

No nice cut: any cut cuts either at least
√
n edges or leaves

regions of diameter at least
√
n

Source of problem: G1 and G2
are far away from each other
have large min-cut

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Diameter: Θ(
√
n)

Cover time: Θ(n3/2) – Kelner-Mądry gives no improvement
over simple random-walk algorithm

No nice cut: any cut cuts either at least
√
n edges or leaves

regions of diameter at least
√
n

Source of problem: G1 and G2
are far away from each other
have large min-cut

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Are G1 and G2 really far away from each other?

We look at distance because it upper-bounds cover time:

Matthews bound

cov(G) ¬ Õ(m · diam(G))

Key change: employ new notion of distance which captures
cover time more tightly: effective resistance.

Tighter bound

cov(G) = Θ̃(m · diameff(G)) ¬ Õ(m · diam(G))

where diameff(G) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Are G1 and G2 really far away from each other?
We look at distance because it upper-bounds cover time:

Matthews bound

cov(G) ¬ Õ(m · diam(G))

Key change: employ new notion of distance which captures
cover time more tightly: effective resistance.

Tighter bound

cov(G) = Θ̃(m · diameff(G)) ¬ Õ(m · diam(G))

where diameff(G) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Are G1 and G2 really far away from each other?
We look at distance because it upper-bounds cover time:

Matthews bound

cov(G) ¬ Õ(m · diam(G))

Key change: employ new notion of distance which captures
cover time more tightly:

effective resistance.

Tighter bound

cov(G) = Θ̃(m · diameff(G)) ¬ Õ(m · diam(G))

where diameff(G) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Are G1 and G2 really far away from each other?
We look at distance because it upper-bounds cover time:

Matthews bound

cov(G) ¬ Õ(m · diam(G))

Key change: employ new notion of distance which captures
cover time more tightly: effective resistance.

Tighter bound

cov(G) = Θ̃(m · diameff(G)) ¬ Õ(m · diam(G))

where diameff(G) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Are G1 and G2 really far away from each other?
We look at distance because it upper-bounds cover time:

Matthews bound

cov(G) ¬ Õ(m · diam(G))

Key change: employ new notion of distance which captures
cover time more tightly: effective resistance.

Tighter bound

cov(G) = Θ̃(m · diameff(G)) ¬ Õ(m · diam(G))

where diameff(G) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Before: G1 and G2 are far away in the graph-distance metric.

And we should treat G1 ∪ G2 as one region!
The exterior of G1 ∪ G2 is easy to partition nicely.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Now: G1 and G2 are close in the effective-resistance metric.
(They are connected by many paths.)

And we should treat G1 ∪ G2 as one region!
The exterior of G1 ∪ G2 is easy to partition nicely.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1 G2

Now: G1 and G2 are close in the effective-resistance metric.
(They are connected by many paths.)

And we should treat G1 ∪ G2 as one region!
The exterior of G1 ∪ G2 is easy to partition nicely.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

G1 G2

Now: G1 and G2 are close in the effective-resistance metric.
(They are connected by many paths.)

And we should treat G1 ∪ G2 as one region!
The exterior of G1 ∪ G2 is easy to partition nicely.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We obtained a nice region D:

large

low effective-resistance-diameter

its exterior can be partitioned nicely

previously now
diam(G) high diameff(D) low
cov(G) high cov(D) low

stop the walk once G covered stop the walk once D covered
slow fast

learn T only learn T ∩ D
done in one shot not done yet – but much progress

We learn T ∩ D. How to use this knowledge?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We obtained a nice region D:

large

low effective-resistance-diameter

its exterior can be partitioned nicely

previously now
diam(G) high diameff(D) low
cov(G) high cov(D) low

stop the walk once G covered stop the walk once D covered
slow fast

learn T only learn T ∩ D
done in one shot not done yet – but much progress

We learn T ∩ D. How to use this knowledge?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We obtained a nice region D:

large

low effective-resistance-diameter

its exterior can be partitioned nicely

previously now
diam(G) high diameff(D) low
cov(G) high cov(D) low

stop the walk once G covered stop the walk once D covered
slow fast

learn T only learn T ∩ D
done in one shot not done yet – but much progress

We learn T ∩ D. How to use this knowledge?

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We condition on the choice of T ∩ D.

Example

If D = {e}, then T ∩ D is either {e} or ∅:

Our algorithm

Find nice region D.

Sample T ∩ D
(run random walk with shortcutting until D is covered).

Condition on this choice, and repeat.
Interior of D (large) is eradicated – lots of progress!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We condition on the choice of T ∩ D.

Example

If D = {e}, then T ∩ D is either {e} or ∅:

Our algorithm

Find nice region D.

Sample T ∩ D
(run random walk with shortcutting until D is covered).

Condition on this choice, and repeat.
Interior of D (large) is eradicated – lots of progress!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

We condition on the choice of T ∩ D.

Example

If D = {e}, then T ∩ D is either {e} or ∅:

Our algorithm

Find nice region D.

Sample T ∩ D
(run random walk with shortcutting until D is covered).

Condition on this choice, and repeat.
Interior of D (large) is eradicated – lots of progress!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Can show: we can always either

find a nice region D, or

identify two large regions G1 and G2 which are far away in the
effective-resistance metric. Then they have a small min-cut!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Can show: we can always either

find a nice region D, or

identify two large regions G1 and G2 which are far away in the
effective-resistance metric. Then they have a small min-cut!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Can show: we can always either

find a nice region D, or

identify two large regions G1 and G2 which are far away in the
effective-resistance metric.

Then they have a small min-cut!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Can show: we can always either

find a nice region D, or

identify two large regions G1 and G2 which are far away in the
effective-resistance metric. Then they have a small min-cut!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Lemma (Reff vs. Cuts)

If Reff (G1,G2) ­ m1/3, then mincut(G1,G2) ¬ m1/3.

Roughly speaking, we make this cut and recurse on both halves.

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Theorem (Mądry, Straszak, T. 2015)

One can generate a uniformly random spanning tree in expected
time Õ(m4/3).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Open questions:

for non-sparse graphs: improve Õ(m4/3) to Õ(mn1/3)

(like Kelner-Mądry improve Õ(m3/2) to Õ(mn1/2))
would give a single algorithm best for all regimes of sparsity
seems to require fast approximation of vertex cuts

faster algorithms

other applications of:

Lemma (Reff vs. Cuts)

mincut(v1, v2) ¬
√

m
Reff (v1,v2)

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

Thank you!

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees

