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Problem: given an undirected graph G = (V ,E ),
sample a spanning tree T uniformly at random.

Notation

T (G ): set of spanning trees of G

Output every tree T with prob. 1/|T (G )|.
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Remark: |T (G )| can be as large as nn−2.

Matrix-tree-theorem methods
O(mnω) (Guenoche 1983)
O(nω) (Colbourn et al. 1996)

Random-walk methods
O(mn) (Aldous 1990, Broder 1989)
Õ(m

√
n) (Kelner-Mądry 2009)

Õ(m4/3) (this work)
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Remark: |T (G )| can be as large as nn−2.

Matrix-tree-theorem methods (good for dense graphs)
O(n3.37) (Guenoche 1983)
O(n2.37) (Colbourn et al. 1996)

Random-walk methods (good for sparse graphs)
O(n2.00) (Aldous 1990, Broder 1989)
Õ(n1.50) (Kelner-Mądry 2009)

Õ(n1.33) (this work)

assuming m = O(n).
Fastest known algorithm for m ¬ O(n1.5).
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Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

1 2

34

5

6 7

8

910

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Random-walk method for sampling RSTs

Run a random walk on G .

Whenever a new vertex is hit,
add to T the edge through which it was hit.

Once G is covered, output T .

Theorem (Aldous 1990, Broder 1989)

The distribution of T is uniform on T (G ).

Time = O(cover time) = O(mn).
Question: do we need to simulate this process in full?
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Improving upon O(mn)
(Kelner-Mądry, FOCS 2009)

First step: find a bad example.
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1 2 3 4 5 6 7 8 9

cov(G ) = Θ(n2)

Out of the O(nm) steps of the walk, we only care about n − 1
(those that visit a new vertex).

Issue: too much walking over already-explored parts.
(We gain no new information this way.)
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1 2 3 4 5 6 7 8 9

Plan:

after we cover a blue subgraph we don’t want to traverse it
anymore

whenever we return there, we’d rather just know through
which edge we will exit, and exit (shortcutting the walk)
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1 2 3 4 5 6 7 8 9

Requirements:

we want to keep the cover time of each blue subgraph low

walking the red edges is costly – we want to reduce their
number

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



1 2 3 4 5 6 7 8 9

Fact (Leighton, Rao 1999)

Can partition G into regions such that:

diameters of regions are small (
√
m),

number of cut edges is small (
√
m).

Walking over each region until it is covered takes Õ(m3/2)
steps in total.

Walking the red edges until G is covered takes Õ(m3/2) steps.
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v

Task: for a vertex v from the region and an edge e from the
region’s boundary, compute Pv (e): probability that a walk started
at v will exit the region through e.

This can be done using electrical flows and fast Laplacian solvers,
also in time Õ(m3/2).

Theorem (Kelner, Mądry 2009)

One can sample a uniformly random spanning tree in time
Õ(m3/2). Can be improved to Õ(m

√
n).
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Improving upon Õ(m
√
n)

(this work)

First step: find a bad example.
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G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Diameter: Θ(
√
n)

Cover time: Θ(n3/2) – Kelner-Mądry gives no improvement
over simple random-walk algorithm

No nice cut: any cut cuts either at least
√
n edges or leaves

regions of diameter at least
√
n

Source of problem: G1 and G2
are far away from each other
have large min-cut
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Are G1 and G2 really far away from each other?

We look at distance because it upper-bounds cover time:

Matthews bound

cov(G ) ¬ Õ(m · diam(G ))

Key change: employ new notion of distance which captures
cover time more tightly: effective resistance.

Tighter bound

cov(G ) = Θ̃(m · diameff(G )) ¬ Õ(m · diam(G ))

where diameff(G ) = maxs,t∈G Reff(s, t).
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where diameff(G ) = maxs,t∈G Reff(s, t).

Mądry, Straszak, Tarnawski Fast Generation of Random Spanning Trees



Are G1 and G2 really far away from each other?
We look at distance because it upper-bounds cover time:

Matthews bound
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G1
G2

n½ paths with n½ vertices each

Expanders of size Ω(𝑛)

Before: G1 and G2 are far away in the graph-distance metric.

And we should treat G1 ∪ G2 as one region!
The exterior of G1 ∪ G2 is easy to partition nicely.
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We obtained a nice region D:

large

low effective-resistance-diameter

its exterior can be partitioned nicely

previously now
diam(G ) high diameff(D) low
cov(G ) high cov(D) low

stop the walk once G covered stop the walk once D covered
slow fast

learn T only learn T ∩ D
done in one shot not done yet – but much progress

We learn T ∩ D. How to use this knowledge?
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We condition on the choice of T ∩ D.

Example

If D = {e}, then T ∩ D is either {e} or ∅:

Our algorithm

Find nice region D.

Sample T ∩ D
(run random walk with shortcutting until D is covered).

Condition on this choice, and repeat.
Interior of D (large) is eradicated – lots of progress!
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Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Can show: we can always either

find a nice region D, or

identify two large regions G1 and G2 which are far away in the
effective-resistance metric. Then they have a small min-cut!
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Outstanding issue:
what if there is no such nice region D?

G1
G2

1 path with n½ vertices

Expanders of size Ω(𝑛)

G1 and G2 are no longer close even in effective-resistance metric.

Lemma (Reff vs. Cuts)

If Reff (G1,G2) ­ m1/3, then mincut(G1,G2) ¬ m1/3.

Roughly speaking, we make this cut and recurse on both halves.
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Theorem (Mądry, Straszak, T. 2015)

One can generate a uniformly random spanning tree in expected
time Õ(m4/3).
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Open questions:

for non-sparse graphs: improve Õ(m4/3) to Õ(mn1/3)

(like Kelner-Mądry improve Õ(m3/2) to Õ(mn1/2))
would give a single algorithm best for all regimes of sparsity
seems to require fast approximation of vertex cuts

faster algorithms

other applications of:

Lemma (Reff vs. Cuts)

mincut(v1, v2) ¬
√

m
Reff (v1,v2)
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Thank you!
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