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How to train DNN efficiently ?

State-of-the-art models are too large to fit on a single accelerator and need to be

trained in a distributed manner
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How to train DNN efficiently ?

Training DNN models require 2 simultaneous design
choices to be made to balance resource utilization
and memory footprint

1. Hardware Architecture 2. Device Placement Strateqy
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Design Choice 1: Hardware Architecture

High Bandwidth Memory

A Explores the on-chip and off-
| chip resource utilization
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Design Choice 2: Device placement

Tensor Model Parallel

____________________________

e r Balance between:
' « Memory footprint
* Networking overhead

« Overall training
throughput
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Motivation

What architecture and model distribution
strategy can achieve the optimal performance
for end-to-end deep learning training?
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Prior Works

Hardware Device
Architecture Search Placement

WHAM
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Need for Co-optimization

BertLarge Throughput vs Area
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Fixed device placement in
architecture search may lead to
hardware under-utilization

Fixed hardware architecture Iin
device placement search limit the
search space of memory footprint
and networking overhead
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Phaze

Framework for co-optimizing hardware architecture,
device placement strategy and per-chip operator
scheduling
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Overview of Phaze
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Overview of Phaze
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Overview of Phaze: Architecture Generator

High Bandwidth Memory
HBM
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Overview of Phaze: Architecture Generator
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Overview of Phaze: Architecture Generator
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Overview of Phaze: Architecture Generator

High Bandwidth Memory Rank by area
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Overview of Phaze: Architecture Generator

High Bandwidth Memory Rank by area
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Overview of Phaze

Training and
Model
Parameters

Architectural

Template

ﬁ

-

o

Graph
Extractor

~

Operator

Graph

)

)

|

Next valid
Configuration

Cr

Georgia
Tech.



Overview of Phaze
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Overview of Phaze: Estimator
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Overview of Phaze: Estimator
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Overview of Phaze

é A Operator
Training and Graph
Model — | Graph
Extractor
Parameters
- % Operator
latency
>
4 I
Architectural ___,| Architecture
Generator
Template Next valid
\_ J Configuration

Georgia
GI' Tech.



Overview of Phaze
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Overview of Phaze: Integer Linear Program

Layer Slices
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» Constraints ensure:

e Order and
dependencies in
graph

 Resource
constraints are met

 Reduced Complexity
without time-indexed
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Overview of Phaze: Dynamic Progamming
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Overview of Phaze
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Overview of Phaze
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Overview of Phaze
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Evaluations



Comparison baselines

Architecture Baselines:
* TPUv4 architecture
 Spotlight- searched architectures

Each architecture is executed with:

* Fixed Expert device placement strategy
* Phaze solver device placement strategy
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Throughput Results

Phaze Model specific and Common
configurations on average provide 3.6x and 2.9x
higher throughput than TPUv4 architecture

O TPUv4 (+Expert DP) o TPUv4 (+Phaze Solver) @ Spotlight (+Expert DP) m Spotlight (+Phaze Solver) mPhaze Common mPhaze Per Model
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Phaze Architecture Characteristics

A@i) 91% area utilization

Large Tensor Cores

High number of Vector Cores

< 64 GB HBM
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Conclusion

Phaze is an algorithmic solution for distributed training:

K \ Co-optimization between architecture search and device
\_A placement

Z Novel ILP programs that reduces convergence time

> < Makes the multi-dimensional search space tractable

_~2 Achieves higher throughput compared to state-of-
alll  the-art solutions iy Seorgia


https://thenounproject.com/icon/sync-795066/
https://thenounproject.com/icon/time-3831383/
https://thenounproject.com/icon/reduce-5730148/

Future Work

* Adding New Evaluation Metrics to Phaze
 Carbon
* Power
 Cost

» Adding Support to model more realistic networks
« Current Assumes a flat network
» More sophisticated collective communication modelling
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