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Why fairness?

• ML algorithms are used in sensitive domains: voting, hiring, criminal justice, access to credit, etc


• Evidence of bias and discrimination:


• An algorithm called COMPAS used to predict if a criminal will reoffend produces much higher false 
positive rate for black people than white people [Angwin et al, 2016]


• Under-representation of women in search results [Kay et al, 2015], e.g., for the search term “CEO", 11% of 
top 100 results on Google Images are women vs 27% in the ground truth


• Gender and race bias in word embeddings  [Caliskan et al, 2017, Bolukbasi et al, 2016], e.g., European 
American names are more associated with pleasant than unpleasant terms, compared to African American 
names, and female names are more associated with family than career words, compared to male names.

Image source: [Angwin et al, 2016] 

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://dl.acm.org/doi/pdf/10.1145/2702123.2702520
https://www.cs.bath.ac.uk/~jjb/ftp/CaliskanEtAl-authors-full.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Streaming submodular maximization

• Natural model for data summarization 

• Applications: exemplar-based clustering, document and corpus summarization, video 
summarization, recommender systems


• Streaming setting: limited memory


• Submodularity: diminishing returns property


     f(S ∪ e) − f(S) ≥ f(T ∪ {e}) − f(T) for all S ⊆ T

Image source: https://towardsdatascience.com/text-summarization-using-deep-learning-6e379ed2e89c

https://towardsdatascience.com/text-summarization-using-deep-learning-6e379ed2e89c


Related work

• Recent work on developing fair  algorithms for fundamental problems, such as classification [Zafar et al, 2017], 
influence maximization [Tsang et al, 2019], ranking [Celis et al, 2018a], clustering [Chierichetti et al, 2017, 
Backurs et al, 2019, Jia et al, 2020], and  diverse data summarization [Celis et al, 2018b].


• Fair submodular maximization only studied in offline setting for monotone objectives [Celis et al, 2017]


Image source: https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb

https://people.mpi-sws.org/~gummadi/papers/disparate_impact_AISTATS_2017.pdf
https://arxiv.org/pdf/1903.00967.pdf
https://arxiv.org/pdf/1704.06840.pdf
https://papers.nips.cc/paper/7088-fair-clustering-through-fairlets.pdf
http://proceedings.mlr.press/v97/backurs19a/backurs19a.pdf
https://link.springer.com/chapter/10.1007/978-3-030-45771-6_17
http://proceedings.mlr.press/v80/celis18a/celis18a.pdf
https://www.ijcai.org/Proceedings/2018/0020.pdf
https://towardsdatascience.com/a-tutorial-on-fairness-in-machine-learning-3ff8ba1040cb
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Common choice: 

S ⊆ V

ℓc ≤ |S ∩ Vc | ≤ uc

ℓc and uc ∝
|Vc |

n

• Given a set of n items (e.g., people) 


• Each item is assigned a color encoding the sensitive attribute. 


•  are the corresponding C disjoint color groups

V = {1,⋯, n}

V1, ⋯, VC

What does it mean to be fair?

• Solution should be “balanced” with respect to some sensitive attribute (e.g., race, gender) [Celis et 
al, 2017, Chierichetti et al, 2017, Celis et al, 2018b, Chierichetti et al, 2019]


https://www.ijcai.org/Proceedings/2018/0020.pdf
https://www.ijcai.org/Proceedings/2018/0020.pdf
https://papers.nips.cc/paper/7088-fair-clustering-through-fairlets.pdf
http://proceedings.mlr.press/v80/celis18a/celis18a.pdf
http://proceedings.mlr.press/v89/chierichetti19a/chierichetti19a.pdf


Fair streaming submodular maximization
Given: ground set , submodular function 


 


where   


Single-pass streaming setting: scan data stream only once, use limited memory ( ) 


V = V1 ∪ ⋯ ∪ Vc f : 2V → ℝ≥0

max
S∈ℱ

f(S)

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}

m ≪ n

Assumptions: 

•  is normalized, i.e.,  


• There exists a feasible solution, i.e., 


• Two settings: monotone , and non-monotone

f f(∅) = 0

ℱ ≠ ∅ ⇒
C

∑
c=1

ℓc ≤ k

f(S) ≥ f(T) for all S ⊆ T



Fair streaming submodular maximization
Given: ground set , submodular function 


 


where   


How hard is this problem? 

• In offline setting, monotone objectives: -approximation [Celis et al, 2017]


• In streaming setting, and for special case of cardinality constraint alone: 


• For monotone objectives: -approximation [Badanidiyuru et al, 2014]. This is tight [Feldman et 
al, 2020]. 


• For non-monotone objectives: -approximation [Feldman et al, 2018]

V = V1 ∪ ⋯ ∪ Vc f : 2V → ℝ≥0

max
S∈ℱ

f(S)

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}

(1 − 1/e)

(1/2 − ϵ)

1/5.82

https://www.ijcai.org/Proceedings/2018/0020.pdf
https://dl.acm.org/doi/10.1145/2623330.2623637
https://dl.acm.org/doi/abs/10.1145/3357713.3384286
https://dl.acm.org/doi/abs/10.1145/3357713.3384286
https://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.pdf


Relation to other problems
Idea: let’s be lazy! Can we reduce this problem to another well-studied problem? 

•Monotone case: Yes! We reduce this to submodular maximisation over matroid constraints


•Non-monotone case: Almost!

Matroid constraints: 

• capture many natural constraints: cardinality , partition matroid 


• existing efficient streaming algorithms: 


‣ -approximation for monotone objectives [Chakrabarti et al, 2014]


‣ -approximation for non-monotone objectives [Feldman et al, 2018] 

|S | ≤ k |S ∩ Vc | ≤ uc

1/4

1/5.82

https://link.springer.com/chapter/10.1007/978-3-319-07557-0_18
https://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.pdf


Relation to matroid constraints

Is  a matroid?  

• Without lower bounds (i.e., ),  is a laminar matroid

ℱ

ℓc = 0 ℱ

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}

No 

Matroid constraints: 

• capture many natural constraints: cardinality , partition matroid 


• existing efficient streaming algorithms: 


‣ -approximation for monotone objectives [Chakrabarti et al, 2014]


‣ -approximation for non-monotone objectives [Feldman et al, 2018] 

|S | ≤ k |S ∩ Vc | ≤ uc

1/4

1/5.82

https://link.springer.com/chapter/10.1007/978-3-319-07557-0_18
https://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.pdf


Monotone case: Reduction

• Without lower bounds (i.e., ),  is a laminar matroid 


• Idea: use matroid streaming algorithm then augment the solution with backup elements


• Difficulty: Solution might violate cardinality constraint!


• Define extendable sets   

A set S is extendable iff  and 

ℓc = 0 ℱ

ℱ̃ = {S ⊆ V : there exists a feasible set S′ ∈ ℱ such that S ⊆ S′ }

|S ∩ Vc | ≤ uc for all c
C

∑
c=1

max{ |S ∩ Vc | , ℓc} ≤ k

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}



• Without lower bounds (i.e., ),  is a laminar matroid 


• Idea: use matroid streaming algorithm then augment the solution with backup elements


• Difficulty: Solution might violate cardinality constraint!


• Define extendable sets   

Key insight:  is a matroid!

ℓc = 0 ℱ

ℱ̃ = {S ⊆ V : there exists a feasible set S′ ∈ ℱ such that S ⊆ S′ }

ℱ̃

Monotone case: Reduction

ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}



Monotone case: Algorithm
: Streaming algorithm for monotone submodular maximisation over matroid constraint


Fair-Streaming algorithm: 

1. Run  to construct an extendable set 


2. In parallel: collect  backup elements for every color 


3. At the end: augment  to a feasible set  using backup elements

𝒜

𝒜 S𝒜

ℓc c

S𝒜 S

Theorem: Fair-Streaming has the same approximation ratio, memory usage, and 
running time as .


➡ -approximation,  memory, using algorithm of [Huang et al, 2020]


➡ -approximation,  memory, using algorithm of [Chakrabarti et al, 2014]

𝒜

1/2 kO(k)

1/4 O(k)

https://arxiv.org/pdf/2002.05477.pdf
https://link.springer.com/chapter/10.1007/978-3-319-07557-0_18


Non-monotone case: Hardness
Can we follow the same approach? 

Difficulty: adding backup elements can drastically decrease solution value

Not exactly..

A
B

V x






F(S) = { |S |  if x ∉ S
|S ∩ A |  if x ∈ S

ℓred = ured = 1

|A | ≪ |B |

Elements in  are indistinguishable 
before seeing 


 Any algorithm that does not store all of V 
will have 

A and B
x

⇒
F(S) ≈ 0

Excess ratio: q = 1 − max
c

ℓc

|Vc |



Non-monotone case: Hardness
Can we follow the same approach? 

Difficulty: adding backup elements can drastically decrease solution value

Not exactly..

A
B

V x






F(S) = { |S |  if x ∉ S
|S ∩ A |  if x ∈ S

ℓred = ured = 1

|A | ≪ |B |

Elements in  are indistinguishable 
before seeing 


 Any algorithm that does not store all of V 
will have 

A and B
x

⇒
F(S) ≈ 0

Theorem: For any , and excess ratio , any -approximation algorithm 
requires  memory.  

ϵ > 0 q ∈ [0,1] (q + ϵ)
Ω(n)

Excess ratio: q = 1 − max
c

ℓc

|Vc |



Non-monotone case: Reduction

Assumption: excess ratio  is not too small 

Extendable sets  

• Idea: use matroid streaming algorithm  to construct an extendable set , then augment the solution 
with backup elements


• Difficulty: adding backup elements can drastically decrease solution value 

• Helper Lemma: If  is submodular, and  is a random set where  with probability 
at most  [Buchbinder et al, 2014]


➡ Apply helper lemma to , and pick backup elements randomly

q = 1 − max
c

ℓc

|Vc |

ℱ̃ = {S ⊆ V : there exists a feasible set S′ ∈ ℱ such that S ⊆ S′ }

𝒜 S𝒜

g : 2V → ℝ≥0 B ⊆ V e ∈ B
1 − q ⇒ 𝔼[g(B)] ≥ q g(∅)

g(S) = f(S ∪ S𝒜)

https://theory.epfl.ch/moranfe/Publications/SODA2014.pdf


Non-monotone case: Algorithm
: Streaming algorithm for non-monotone submodular maximisation over matroid constraint


Fair-Sample-Streaming algorithm: 

1. Run  to construct an extendable set 


2. In parallel: sample without replacement  backup elements for every color , using reservoir sampling 

3. At the end: augment  to a feasible set  using backup elements

𝒜

𝒜 S𝒜

ℓc c

S𝒜 S

Theorem: Fair-Sample-Streaming loses at most a factor q of the approximation ratio 
of , and has the same memory usage, and running time as 


➡ -approximation,  memory, using algorithm of [Feldman et al, 2018]

𝒜 𝒜

q/5.82 O(k)

https://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.pdf


Empirical evaluation

Criteria: 

1. Objective value


2. Violation of fairness constraints: 


3. Number of oracle calls


“Unfair” baselines: 

• Upper-Bounds: streaming algorithm for matroid constraint [Feldman et al, 2018], applied to matroid 
defining upper bounds and cardinality constraint only; both monotone and non-monotone


• Sieve-Streaming: streaming algorithm for cardinality constraint [Badanidiyuru et al, 2014]; monotone

err(S) = ∑
c∈[C]

max{ |S ∩ Vc | − uc, ℓc − |S ∩ Vc | ,0}

Problem:   where   max
S∈ℱ

f(S) ℱ = {S ⊆ V : |S | ≤ k, |S ∩ Vc | ∈ [ℓc, uc] for all c = 1,⋯, C}

https://papers.nips.cc/paper/7353-do-less-get-more-streaming-submodular-maximization-with-subsampling.pdf
https://dl.acm.org/doi/10.1145/2623330.2623637


Social influence maximization
• Dataset: Pokec social network [Leskovec et al, 2014],  nodes (users),  edges (friendships) 


• Objective (monotone submodular):  where  is the set of neighbors of node  


• Sensitive attribute and bounds: age, 


1 632 803 30 622 564

f(S) = | ∪v∈S N(v) | N(v) v

ℓc = max{0, |Vc | / |V | − 0.05} ⋅ k, uc = min{1, |Vc | / |V | + 0.05} ⋅ k
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http://snap.stanford.edu/data/


DPP-based summarization
• Dataset: Census Income dataset [Dua et al, 2017],  records, with 14 attributes (race, gender, income, etc)


• Objective (non-monotone submodular):  where  is principal submatrix of  indexed by 


• Sensitive attribute and bounds: race, 


•
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f(S) = log det(LS) LS L S

ℓc = ⌊0.9
|Vc |

|V |
k⌋, uc = ⌈1.1
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https://archive.ics.uci.edu/ml/datasets/census+income


Conclusion

✓First streaming algorithms for fair submodular maximisation 


✓Price of fairness is limited 


✓Explicitly imposing fairness is necessary


