Constant-Factor Approximation for ATSP with Two Edge Weights

Jakub Tarnawski

joint work with Ola Svensson and László A. Végh

EPFL

June 2, 2016

Traveling Salesman Problem

Given distances between n cities, find the shortest tour which visits them all.

- > Probably the best known NP-hard optimization problem
- ▶ Variants studied in mathematics as early as the 1800s
- Still huge gaps in understanding, especially of the asymmetric version

Definition of ATSP

Given: weighted directed graph $G = (V, E, w), w : E \to \mathbb{R}_+$.

Find the cheapest multiset of edges $F \subseteq E$ such that the subgraph (V, F) is Eulerian and connected.

• Eulerian: for each vertex, indegree = outdegree.

•
$$w(F) = \sum_{e \in E} w(e)$$
: weight (cost) of tour.

Write x_e for the number of times we traverse edge e and

$$\begin{array}{ll} \text{minimize} & \sum_{e \in E} w_e x_e \\ \text{subject to} & x(\delta^+(v)) = x(\delta^-(v)) \quad \text{for all } v \in V, \\ & x(\delta^+(S)) \geq 1 \quad \text{for all } \emptyset \neq S \subsetneq V, \\ & x_e \geq 0 \quad \text{for all } e \in E \end{array}$$

where $\delta^+(v)$: outgoing edges of v, $\delta^-(v)$: incoming edges.

That is:

- x should be Eulerian,
- ▶ x should connect the entire graph.

Can be solved in polynomial time.

ATSP is NP-hard (even if G is unweighted, undirected etc.)

Main questions:

What is the best approximation ratio possible (in polynomial time)?

What is the integrality gap of the Held-Karp relaxation?

State of the art

- Approximation algorithms:
 - ▶ $O\left(\frac{\log n}{\log \log n}\right)$ -approximation algorithm [Asadpour et al. 2010]
 - Iower bound: 75/74-approximation is NP-hard [Karpinski et al. 2013]
- Integrality gap:
 - ▶ upper bound: $O(poly \log \log n)$ [Anari, Oveis Gharan 2014]
 - Iower bound: 2 [Charikar et al. 2006]
 - (smaller gap between lower and upper bounds)
- ▶ Is there an $\mathcal{O}(1)$ -approximation algorithm?

Oveis Gharan, Saberi 2011

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on bounded-genus graphs (incl. planar graphs)

(because bounded-genus graphs have $\mathcal{O}(1)$ -thin trees)

For symmetric TSP, since 2010, improvements when *G* is **unweighted** (graph TSP). What about ATSP?

$\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs (incl. planar graphs)

(because bounded-genus graphs have $\mathcal{O}(1)$ -thin trees)

For symmetric TSP, since 2010, improvements when *G* is **unweighted** (graph TSP). What about ATSP?

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs (incl. planar graphs)

(because bounded-genus graphs have $\mathcal{O}(1)$ -thin trees)

For symmetric TSP, since 2010, improvements when G is unweighted (graph TSP). What about ATSP?

Svensson 2015 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs (incl. planar graphs)

(because bounded-genus graphs have $\mathcal{O}(1)$ -thin trees)

For symmetric TSP, since 2010, improvements when G is unweighted (graph TSP). What about ATSP?

Svensson 2015

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

Svensson 2015

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

- ▶ Implies $O(w_{max}/w_{min})$ -approximation in general but this ratio can be unbounded
- Next logical step?

is work: Svensson, T., Vegh 2016

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on graphs with two edge weights

(also a constant bound on the integrality gap)

Svensson 2015

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

- ▶ Implies $O(w_{max}/w_{min})$ -approximation in general but this ratio can be unbounded
- Next logical step?

This work: Svensson, T., Vegh 2016

 $\mathcal{O}(1)\text{-approximation}$ algorithm for ATSP on graphs with two edge weights

(also a constant bound on the integrality gap)

Svensson 2015

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

follows by:

- defining a new easier problem called Local-Connectivity ATSP
- reduction (technical core of paper):

For any class of graphs, if can approximate Local-Connectivity ATSP well, then can approximate ATSP well!

 can indeed approximate Local-Connectivity ATSP well for unweighted graphs (easy part of paper)
(note similarity with the thin tree approach)

For what other classes of graphs can we approximate Local-Connectivity ATSP well?

Svensson 2015

 $\mathcal{O}(1)$ -approximation algorithm for ATSP on unweighted graphs

follows by:

- defining a new easier problem called Local-Connectivity ATSP
- reduction (technical core of paper):

For any class of graphs, if can approximate Local-Connectivity ATSP well, then can approximate ATSP well!

 can indeed approximate Local-Connectivity ATSP well for unweighted graphs (easy part of paper)
(note similarity with the thin tree approach)

For what other classes of graphs can we approximate Local-Connectivity ATSP well?

- A lot of work to prove the reduction
- But approximating Local-Connectivity ATSP on unweighted graphs is easy
- Now makes sense to put more work into the latter

Good sign: previously O(1)-approximation for unweighted ATSP was unknown – now it follows easily

- ► A lot of work to prove the reduction
- But approximating Local-Connectivity ATSP on unweighted graphs is easy
- Now makes sense to put more work into the latter

Good sign: previously $\mathcal{O}(1)$ -approximation for unweighted ATSP was unknown – now it follows easily

Want the cheapest $x : E \to \mathbb{R}_+$ which touches every vertex and is:

Everything in the diagram is easy, except for ATSP!

JUST BEVAX

CONNECTIVITY

Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

- Pick cheapest cycle cover (polytime solvable)
- "Contract"
- Repeat

Number of phases = approximation ratio = $\log n$ because **connectivity is too weak**

Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

- Pick cheapest cycle cover (polytime solvable)
- "Contract"
- Repeat

Number of phases = approximation ratio = $\log n$ because **connectivity is too weak**

Repeated cycle cover algorithm [Frieze et al. 1982]

- Pick cheapest cycle cover (polytime solvable)
- "Contract"

Repeat

Number of phases = approximation ratio = $\log n$ because **connectivity is too weak**

Find a subproblem which **yields stronger connectivity** than min-cost cycle cover but **weaker** than ATSP (maybe not polytime solvable)

Given: weighted directed graph $G = (V, E, w), w : E \to \mathbb{R}_+$, and a partitioning $V = V_1 \cup ... \cup V_k$.

Find a **cheap** multiset of edges $F \subseteq E$ such that the subgraph (V, F) is Eulerian and **each cut** $(V_i, \overline{V_i})$ is crossed.

Given: weighted directed graph $G = (V, E, w), w : E \to \mathbb{R}_+$, and a partitioning $V = V_1 \cup ... \cup V_k$.

Find a **cheap** multiset of edges $F \subseteq E$ such that the subgraph (V, F) is Eulerian and **each cut** $(V_i, \overline{V_i})$ is crossed.

Given: weighted directed graph $G = (V, E, w), w : E \to \mathbb{R}_+$, and a partitioning $V = V_1 \cup ... \cup V_k$.

Find a **cheap** multiset of edges $F \subseteq E$ such that the subgraph (V, F) is Eulerian and **each cut** $(V_i, \overline{V_i})$ is crossed.

Algorithm is α -light if each component in (V, F) is locally cheap: $\frac{\# \text{ edges}}{\# \text{ vertices}} \leq \alpha. \text{ (oversimplified)}$

Framework:

_

$$\mathrm{lb}: V \to \mathbb{R}_+$$
 with
 $\sum_{v \in V} \mathrm{lb}(v) = \mathrm{OPT}_{\mathrm{LP}}$

partitioning
$$V = V_1 \cup ... \cup V_k$$

solution F which is locally cheap w.r.t. lb

An α -light algorithm for Local-Connectivity ATSP has two phases:

- ▶ Given G = (V, E, w), output $lb : V \to \mathbb{R}_+$ with $\sum_{v \in V} lb(v) = OPT_{LP}$.
 - lb stands for "lower bound": a way to distribute the LP-lower-bound among vertices.

An α -*light* algorithm for Local-Connectivity ATSP has two phases:

- ▶ Given G = (V, E, w), output $lb : V \to \mathbb{R}_+$ with $\sum_{v \in V} lb(v) = OPT_{LP}$.
 - lb stands for "lower bound": a way to distribute the LP-lower-bound among vertices.
- Now, given also a partitioning V = V₁ ∪ ... ∪ V_k, find multiset of edges F ⊆ E such that:
 - subgraph (V, F) is Eulerian,
 - ▶ each V_i -cut is crossed: $|F \cap \delta^+(V_i)| \ge 1$ for i = 1, ..., k,
 - F is cheap, even *locally*: for each connected component of (V, F) we have weight of edges in component ^{weight} of vertices in component ≤ α.

An α -light algorithm for Local-Connectivity ATSP has two phases: Compared to an α -approximation for ATSP (w.r.t. HK relaxation):

- ▶ Given G = (V, E, w), output $lb : V \to \mathbb{R}_+$ with $\sum_{v \in V} lb(v) = OPT_{LP}$. (Not present in ATSP.)
 - lb stands for "lower bound": a way to distribute the LP-lower-bound among vertices.
- ▶ Now, given also a partitioning $V = V_1 \cup ... \cup V_k$, (not given) find multiset of edges $F \subseteq E$ such that:
 - ▶ subgraph (V, F) is Eulerian,
 - each V_i-cut is crossed: |F ∩ δ⁺(V_i)| ≥ 1 for i = 1, ..., k, In ATSP, every cut is crossed: |F ∩ δ⁺(S)| ≥ 1 for Ø ⊆ S ⊆ V,
 - F is cheap, even *locally*: for each connected component of (V, F) we have weight of edges in component ≤ α. In ATSP, F is globally cheap: w(F)/(DPT_{LP}) ≤ α.

Recap:

- ► the connectivity requirement is relaxed: rather than crossing all cuts, F only needs to cross each component of the partition V = V₁ ∪ ... ∪ V_k,
- the cost requirement is strengthened: rather than being cheap as a whole, F needs to be cheap locally at each connected component (w.r.t. some lb function).

For any class of graphs:

Fact

If there is an α -approximation for ATSP (w.r.t. HK relaxation), then there is an α -light algorithm for Local-Connectivity ATSP.

Proof.

Output any $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$. Disregard the partitioning and just run the ATSP algorithm. If its output is globally cheap, it's also locally cheap (since there is only one connected component).

Theorem (Svensson)

If there is an α -light algorithm for Local-Connectivity ATSP, then:

• the integrality gap of the Held-Karp relaxation is at most 5α ,

• there is a 9.001 α -approximation algorithm for ATSP.

For any class of graphs:

Fact

If there is an α -approximation for ATSP (w.r.t. HK relaxation), then there is an α -light algorithm for Local-Connectivity ATSP.

Proof.

Output any $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$. Disregard the partitioning and just run the ATSP algorithm. If its output is globally cheap, it's also locally cheap (since there is only one connected component).

Theorem (Svensson)

If there is an α -light algorithm for Local-Connectivity ATSP, then:

- the integrality gap of the Held-Karp relaxation is at most 5α ,
- there is a 9.001 α -approximation algorithm for ATSP.

For any class of graphs:

Theorem (Svensson)

If there is an α -light algorithm for Local-Connectivity ATSP, then:

- the integrality gap of the Held-Karp relaxation is at most 5α ,
- there is a 9.001α-approximation algorithm for ATSP.

And:

Fact There is a 3-light algorithm for Local-Connectivity ATSP on unweighted graphs.

So:

Theorem

There is a 27-approximation algorithm for ATSP on unweighted graphs.

For any class of graphs:

Theorem (Svensson)

If there is an α -light algorithm for Local-Connectivity ATSP, then:

- the integrality gap of the Held-Karp relaxation is at most 5α ,
- there is a 9.001α-approximation algorithm for ATSP.

lf:

Fact

There is a $\mathcal{O}(1)$ -light algorithm for Local-Connectivity ATSP on some class of graphs.

Then:

Theorem

There is a $\mathcal{O}(1)$ -approximation algorithm for ATSP on that class of graphs.

For any class of graphs:

Theorem (Svensson)

If there is an α -light algorithm for Local-Connectivity ATSP, then:

- the integrality gap of the Held-Karp relaxation is at most 5α ,
- there is a 9.001 α -approximation algorithm for ATSP.

And:

Theorem (Svensson, T., Vegh [IPCO 2016])

There is a $\mathcal{O}(1)$ -light algorithm for Local-Connectivity ATSP on graphs with two edge weights.

So:

Theorem

There is a $\mathcal{O}(1)$ -approximation algorithm for ATSP on graphs with two edge weights.

As a warmup, we show:

Fact

There is a 3-light algorithm for Local-Connectivity ATSP on unweighted graphs.

Even simpler: assume the given partitioning is the singleton partition $V = \{v_1\} \cup ... \cup \{v_n\}$.

How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶
$$lb: V \to \mathbb{R}_+$$
 such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

such that

- ▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,
- ▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^*(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^*$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \leq z(\delta^+(v)) \leq \lceil x^*(\delta^+(v)) \rceil$

$$(z = x^* \text{ is feasible})$$
Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶
$$lb: V \to \mathbb{R}_+$$
 such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \le z(\delta^+(v)) \le \lceil x^*(\delta^+(v)) \rceil$

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶ $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \le z(\delta^+(v)) \le \lceil x^*(\delta^+(v)) \rceil$

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶ $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

• $F \subseteq E$: Eulerian multiset of edges

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \leq z(\delta^+(v)) \leq \lceil x^\star(\delta^+(v)) \rceil$

 $(z = x^*$ is feasible)

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶ $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

• $F \subseteq E$: Eulerian multiset of edges

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \leq z(\delta^+(v)) \leq \lceil x^*(\delta^+(v)) \rceil$

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶ $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \leq z(\delta^+(v)) \leq \lceil x^*(\delta^+(v)) \rceil$

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:

▶ $lb: V \to \mathbb{R}_+$ such that $\sum_{v \in V} lb(v) = OPT_{LP}$,

such that

▶ each singleton cut is crossed: $|F \cap \delta^+(v)| \ge 1$ for all $v \in V$,

▶ locally at each connected component \widetilde{G} of (V, F), F is cheap: $|F \cap E(\widetilde{G})| \leq 3 \cdot \text{lb}(\widetilde{G}).$

We round the LP solution x^* : Define lb so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \leq z(\delta^+(v)) \leq \lceil x^*(\delta^+(v)) \rceil$

Define ${\rm lb}$ so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \le z(\delta^+(v)) \le \lceil x^\star(\delta^+(v)) \rceil$ $(z = x^\star \text{ is feasible})$

Left to verify:

 locally at each connected component G of (V, F), F is cheap: |F ∩ E(G)| ≤ 3 · lb(G).
 True for any G ⊆ V:

$$|F \cap E(\widetilde{G})| \leq \sum_{v \in \widetilde{G}} z(\delta^+(v)) \leq \sum_{v \in \widetilde{G}} \lceil x^*(\delta^+(v)) \rceil \leq \sum_{v \in \widetilde{G}} 2x^*(\delta^+(v)) = 2\mathrm{lb}(\widetilde{G}).$$

Crucial: rounding up is fine because $x^*(\delta^+(v)) \ge 1$.

Define ${\rm lb}$ so that each node "pays" for its outgoing edges:

$$\operatorname{lb}(v) := x^{\star}(\delta^+(v)) = \sum_{e \in \delta^+(v)} x_e^{\star}$$

And pick an integral solution $z = \mathbb{1}_F$ to the circulation problem:

 $1 \le z(\delta^+(v)) \le \lceil x^\star(\delta^+(v)) \rceil$ $(z = x^\star \text{ is feasible})$

Left to verify:

 locally at each connected component G of (V, F), F is cheap: |F ∩ E(G)| ≤ 3 · lb(G).
 True for any G ⊆ V:

$$|F \cap E(\widetilde{G})| \leq \sum_{v \in \widetilde{G}} z(\delta^+(v)) \leq \sum_{v \in \widetilde{G}} \lceil x^*(\delta^+(v)) \rceil \leq \sum_{v \in \widetilde{G}} 2x^*(\delta^+(v)) = 2\mathrm{lb}(\widetilde{G}).$$

Crucial: rounding up is fine because $x^*(\delta^+(v)) \ge 1$.

- ► Got 2-light algorithm
- ▶ Dealing with arbitrary partitions $V = V_1 \cup ... \cup V_k$ makes it 3-light

Two edge weights

Why not just do the same?

- ▶ Black edges are cheap and have $x_e^{\star} = 1 \frac{1}{k}$
- Red edges are expensive and have $x_e^{\star} = \frac{1}{k}$

► In x*, each vertex pays only for ¹/_k expensive flow: the **thick red solution** can't be paid locally

Two edge weights

Why not just do the same?

- ▶ Black edges are cheap and have $x_e^{\star} = 1 \frac{1}{k}$
- Red edges are expensive and have $x_e^{\star} = \frac{1}{k}$
- In x*, each vertex pays only for ¹/_k expensive flow: the thick red solution can't be paid locally

Problem: rounding red x^* -flow from ε to 1 is too expensive

Solution: group small chunks of red x^* -flow together and then round them

- \blacktriangleright we use a **flow theorem** to find a small set T of **terminals**
- we reroute red x*-flow to these terminals so that any path that uses an expensive edge must then go a terminal
- we put higher lb on terminals so the red x*-flow can be paid for there

Problem: rounding red x^* -flow from ε to 1 is too expensive

Solution: group small chunks of red x^* -flow together and then round them

- ▶ we use a **flow theorem** to find a small set *T* of **terminals**
- we reroute red x*-flow to these terminals so that any path that uses an expensive edge must then go a terminal
- we put higher lb on terminals so the red x*-flow can be paid for there

The flow theorem

Let E_1 : expensive edges.

Theorem

There is a set of terminals $T \subseteq V$ and a flow f from the tails of expensive edges to T which:

► $f \leq x^*$

• f saturates all expensive edges and has value $x^*(E_1)$

• *T* is small: $|T| \le 8x^*(E_1)$

The picture shows f. Red edges are expensive. x^* is 1/3 for expensive edges and 2/3 for cheap (black) edges. Terminals T are black.

Splitting the graph

We use f and T to split G and x^* :

copies v¹ carry the *f*-flow, copies v⁰ carry the rest (x^{*} − f)
 now any cycle with an expensive edge must visit a terminal
 And pick an integral solution z = 1_F to the circulation problem:

$$1 \leq z(\delta^+(v)) \leq \lceil 2x^\star_{
m sp}(\delta^+(v))
ceil$$

- ▶ This mostly does the trick for the singleton partitioning.
- ▶ More work needed in the general case.

What wider classes of graphs admit an O(1)-approximation?
 Even the case of three edge weights is unsolved

- ▶ Beat $O(\log n / \log \log n)$ for general case
 - Can we match the known integrality gap upper bound O(poly log log n)?

Thank you for your attention!