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Traveling Salesman Problem

Given distances between n cities,
find the shortest tour which visits them all.

I Probably the best known NP-hard optimization problem

I Variants studied in mathematics as early as the 1800s

I Still huge gaps in understanding, especially of the asymmetric
version

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



Definition of ATSP

Given: weighted directed graph G = (V ,E ,w), w : E → R+.

Find the cheapest multiset of edges F ⊆ E such that the subgraph
(V ,F ) is Eulerian and connected.

I Eulerian: for each vertex, indegree = outdegree.

I w(F ) =
∑

e∈E w(e): weight (cost) of tour.
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Held-Karp relaxation

Write xe for the number of times we traverse edge e and

minimize
∑
e∈E

wexe

subject to x(δ+(v)) = x(δ−(v)) for all v ∈ V ,

x(δ+(S)) ≥ 1 for all ∅ 6= S ( V ,

xe ≥ 0 for all e ∈ E

where δ+(v): outgoing edges of v , δ−(v): incoming edges.

That is:

I x should be Eulerian,

I x should connect the entire graph.

Can be solved in polynomial time.
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ATSP is NP-hard (even if G is unweighted, undirected etc.)

Main questions:

What is the best approximation ratio possible (in polynomial time)?

What is the integrality gap of the Held-Karp relaxation?
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State of the art

I Approximation algorithms:

I O
(

log n
log log n

)
-approximation algorithm [Asadpour et al. 2010]

I lower bound: 75/74-approximation is NP-hard [Karpinski et al.
2013]

I Integrality gap:
I upper bound: O(poly log log n) [Anari, Oveis Gharan 2014]
I lower bound: 2 [Charikar et al. 2006]
I (smaller gap between lower and upper bounds)

I Is there an O(1)-approximation algorithm?
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Special cases

What if we assume something about G?

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs
(incl. planar graphs)

(because bounded-genus graphs have O(1)-thin trees)

For symmetric TSP, since 2010, improvements when G is
unweighted (graph TSP). What about ATSP?

Svensson 2015

O(1)-approximation algorithm for ATSP on unweighted graphs
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Our results

Svensson 2015

O(1)-approximation algorithm for ATSP on unweighted graphs

I Implies O(wmax/wmin)-approximation in general – but this
ratio can be unbounded

I Next logical step?

This work: Svensson, T., Vegh 2016

O(1)-approximation algorithm for ATSP on graphs with two edge
weights

(also a constant bound on the integrality gap)
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Local-Connectivity ATSP

Svensson 2015

O(1)-approximation algorithm for ATSP on unweighted graphs

follows by:

I defining a new easier problem called Local-Connectivity ATSP

I reduction (technical core of paper):

For any class of graphs, if can approximate Local-Connectivity
ATSP well, then can approximate ATSP well!

I can indeed approximate Local-Connectivity ATSP well for
unweighted graphs (easy part of paper)

(note similarity with the thin tree approach)

For what other classes of graphs can we approximate
Local-Connectivity ATSP well?
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More motivation

I A lot of work to prove the reduction

I But approximating Local-Connectivity ATSP
on unweighted graphs is easy

I Now makes sense to put more work into the latter

Good sign: previously O(1)-approximation for unweighted ATSP
was unknown – now it follows easily
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Pick two

Want the cheapest x : E → R+ which touches every vertex and is:

Eulerian connected

integral

Held-Karp
relaxation

min-cost
cycle cover

minimum
spanning

tree
ATSP

Everything in the diagram is easy, except for ATSP!
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Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

I Pick cheapest cycle cover (polytime solvable)

I “Contract”

I Repeat

Number of phases = approximation ratio = log n
because connectivity is too weak

Find a subproblem which yields stronger
connectivity than min-cost cycle cover
but weaker than ATSP
(maybe not polytime solvable)
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Local-Connectivity ATSP

Given: weighted directed graph G = (V ,E ,w), w : E → R+,
and a partitioning V = V1 ∪ ... ∪ Vk .

Find a cheap multiset of edges F ⊆ E such that the subgraph
(V ,F ) is Eulerian and each cut (Vi ,Vi ) is crossed.

Algorithm is α-light if each component in (V ,F ) is locally cheap:
# edges

# vertices ≤ α. (oversimplified)
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Local-Connectivity ATSP

Framework:

G = (V ,E ,w) ⇐=

=⇒ lb : V → R+ with∑
v∈V lb(v) = OPTLP

partitioning V = V1 ∪ ... ∪ Vk ⇐=

=⇒ solution F which is locally cheap
w.r.t. lb
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Local-Connectivity ATSP

An α-light algorithm for Local-Connectivity ATSP has two phases:

Compared to an α-approximation for ATSP (w.r.t. HK relaxation):

I Given G = (V ,E ,w), output lb : V → R+ with∑
v∈V lb(v) = OPTLP.

(Not present in ATSP.)

I lb stands for “lower bound”: a way to distribute the
LP-lower-bound among vertices.

I Now, given also a partitioning V = V1 ∪ ... ∪ Vk ,

(not given)

find multiset of edges F ⊆ E such that:

I subgraph (V ,F ) is Eulerian,
I each Vi -cut is crossed: |F ∩ δ+(Vi )| ≥ 1 for i = 1, ..., k,

In ATSP, every cut is crossed: |F ∩ δ+(S)| ≥ 1 for ∅ ( S ( V ,

I F is cheap, even locally : for each connected component of
(V ,F ) we have weight of edges in component

lb of vertices in component ≤ α.

In ATSP, F is globally cheap: w(F )
lb(V ) = w(F )

OPTLP
≤ α.
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Local-Connectivity ATSP

Recap:

I the connectivity requirement is relaxed: rather than crossing
all cuts, F only needs to cross each component of the
partition V = V1 ∪ ... ∪ Vk ,

I the cost requirement is strengthened: rather than being cheap
as a whole, F needs to be cheap locally at each connected
component (w.r.t. some lb function).
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Local-Connectivity ATSP

For any class of graphs:

Fact

If there is an α-approximation for ATSP (w.r.t. HK relaxation),
then there is an α-light algorithm for Local-Connectivity ATSP.

Proof.

Output any lb : V → R+ such that
∑

v∈V lb(v) = OPTLP.
Disregard the partitioning and just run the ATSP algorithm.
If its output is globally cheap, it’s also locally cheap
(since there is only one connected component).

Theorem (Svensson)

If there is an α-light algorithm for Local-Connectivity ATSP, then:

I the integrality gap of the Held-Karp relaxation is at most 5α,

I there is a 9.001α-approximation algorithm for ATSP.

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



Local-Connectivity ATSP

For any class of graphs:

Fact

If there is an α-approximation for ATSP (w.r.t. HK relaxation),
then there is an α-light algorithm for Local-Connectivity ATSP.

Proof.

Output any lb : V → R+ such that
∑

v∈V lb(v) = OPTLP.
Disregard the partitioning and just run the ATSP algorithm.
If its output is globally cheap, it’s also locally cheap
(since there is only one connected component).

Theorem (Svensson)

If there is an α-light algorithm for Local-Connectivity ATSP, then:

I the integrality gap of the Held-Karp relaxation is at most 5α,

I there is a 9.001α-approximation algorithm for ATSP.

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an α-light algorithm for Local-Connectivity ATSP, then:

I the integrality gap of the Held-Karp relaxation is at most 5α,

I there is a 9.001α-approximation algorithm for ATSP.

And:

Fact

There is a 3-light algorithm for Local-Connectivity ATSP
on unweighted graphs.

So:

Theorem

There is a 27-approximation algorithm for ATSP
on unweighted graphs.
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Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an α-light algorithm for Local-Connectivity ATSP, then:

I the integrality gap of the Held-Karp relaxation is at most 5α,

I there is a 9.001α-approximation algorithm for ATSP.

If:

Fact

There is a O(1)-light algorithm for Local-Connectivity ATSP
on some class of graphs.

Then:

Theorem

There is a O(1)-approximation algorithm for ATSP
on that class of graphs.
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Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an α-light algorithm for Local-Connectivity ATSP, then:

I the integrality gap of the Held-Karp relaxation is at most 5α,

I there is a 9.001α-approximation algorithm for ATSP.

And:

Theorem (Svensson, T., Vegh [IPCO 2016])

There is a O(1)-light algorithm for Local-Connectivity ATSP
on graphs with two edge weights.

So:

Theorem

There is a O(1)-approximation algorithm for ATSP
on graphs with two edge weights.
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How to solve Local-Connectivity ATSP?

As a warmup, we show:

Fact

There is a 3-light algorithm for Local-Connectivity ATSP on
unweighted graphs.

Even simpler: assume the given partitioning is
the singleton partition V = {v1} ∪ ... ∪ {vn}.
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How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G , singleton partition

Given G = (V ,E ) (unweighted), want:

I lb : V → R+ such that
∑

v∈V lb(v) = OPTLP,

I F ⊆ E : Eulerian multiset of edges

such that

I each singleton cut is crossed: |F ∩ δ+(v)| ≥ 1 for all v ∈ V ,

I locally at each connected component G̃ of (V ,F ), F is cheap:
|F ∩ E (G̃ )| ≤ 3 · lb(G̃ ).

We round the LP solution x?:
Define lb so that each node “pays” for its outgoing edges:

lb(v) := x?(δ+(v)) =
∑

e∈δ+(v) x
?
e

And pick an integral solution z = 1F to the circulation problem:

1 ≤ z(δ+(v)) ≤ dx?(δ+(v))e (z = x? is feasible)
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How to solve Local-Connectivity ATSP?

Define lb so that each node “pays” for its outgoing edges:

lb(v) := x?(δ+(v)) =
∑

e∈δ+(v) x
?
e

And pick an integral solution z = 1F to the circulation problem:

1 ≤ z(δ+(v)) ≤ dx?(δ+(v))e (z = x? is feasible)

Left to verify:

I locally at each connected component G̃ of (V ,F ), F is cheap:
|F ∩ E (G̃ )| ≤ 3 · lb(G̃ ).

True for any G̃ ⊆ V :

|F∩E (G̃ )| ≤
∑
v∈G̃

z(δ+(v)) ≤
∑
v∈G̃

dx?(δ+(v))e ≤
∑
v∈G̃

2x?(δ+(v)) = 2lb(G̃ ).

Crucial: rounding up is fine because x?(δ+(v)) ≥ 1.
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How to solve Local-Connectivity ATSP?

I Got 2-light algorithm

I Dealing with arbitrary partitions V = V1 ∪ ... ∪ Vk

makes it 3-light
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Two edge weights

I Why not just do the same?

V2

V1

I Black edges are cheap and have x?e = 1− 1
k

I Red edges are expensive and have x?e = 1
k

I In x?, each vertex pays only for 1
k expensive flow:

the thick red solution can’t be paid locally
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Two edge weights

Problem: rounding red x?-flow from ε to 1 is too expensive

Solution: group small chunks of red x?-flow together and then
round them

I we use a flow theorem to find a small set T of terminals

I we reroute red x?-flow to these terminals so that any path
that uses an expensive edge must then go a terminal

I we put higher lb on terminals so the red x?-flow can be paid
for there
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The flow theorem

Let E1: expensive edges.

Theorem

There is a set of terminals T ⊆ V and a flow f from the tails of
expensive edges to T which:

I f ≤ x?

I f saturates all expensive edges and has value x?(E1)

I T is small: |T | ≤ 8x?(E1)
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The picture shows f .

Red edges are expensive.

x? is 1/3 for expensive edges

and 2/3 for cheap (black) edges.

Terminals T are black.
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Splitting the graph

We use f and T to split G and x?:

G and f
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Gsp and x?
sp
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I copies v1 carry the f -flow, copies v0 carry the rest (x? − f )
I now any cycle with an expensive edge must visit a terminal

And pick an integral solution z = 1F to the circulation problem:

1 ≤ z(δ+(v)) ≤ d2x?sp(δ+(v))e
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Splitting the graph

I This mostly does the trick for the singleton partitioning.

I More work needed in the general case.
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Future work

I What wider classes of graphs admit an O(1)-approximation?

I Even the case of three edge weights is unsolved

I Beat O(log n/ log log n) for general case

I Can we match the known integrality gap upper bound
O(poly log log n)?
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Thank you for your attention!
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