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Traveling Salesman Problem

Given distances between n cities,
find the shortest tour which visits them all.

» Probably the best known NP-hard optimization problem
» Variants studied in mathematics as early as the 1800s

» Still huge gaps in understanding, especially of the asymmetric
version
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Definition of ATSP

Given: weighted directed graph G = (V,E,w), w: E — R,.

Find the cheapest multiset of edges F C E such that the subgraph
(V, F) is Eulerian and connected. ’

» Eulerian: for each vertex, indegree = outdegree.
> w(F)=>.cgw(e): weight (cost) of tour.
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Held-Karp relaxation

Write x, for the number of times we traverse edge e and

minimize Z WeXe
ecE
subject to x(6T(v)) = x(67(v)) forall veV,
x(67(S)) > 1 forall #S C V,
Xe > 0 forallec E

AV,

where 1 (v): outgoing edges of v, = (v): incoming edges.

That is:
» x should be Eulerian,
» x should connect the entire graph.

Can be solved in polynomial time.
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ATSP is NP-hard (even if G is unweighted, undirected etc.)

Main questions:

What is the best approximation ratio possible (in polynomial time)?J

What is the integrality gap of the Held-Karp relaxation? )
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State of the art

» Approximation algorithms:

» O (Iogi;n)—approximation algorithm [Asadpour et al. 2010]

» lower bound: 75/74-approximation is NP-hard [Karpinski et al.
2013]

> Integrality gap:

» upper bound: O(poly loglog n) [Anari, Oveis Gharan 2014]
» lower bound: 2 [Charikar et al. 2006]

» (smaller gap between lower and upper bounds)

» Is there an O(1)-approximation algorithm?
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Special cases

What if we assume something about G? J
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Special cases

What if we assume something about G? J

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs
(incl. planar graphs)

(because bounded-genus graphs have O(1)-thin trees)

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



Special cases

What if we assume something about G? J

Oveis Gharan, Saberi 2011
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Special cases

What if we assume something about G? )

Oveis Gharan, Saberi 2011

O(1)-approximation algorithm for ATSP on bounded-genus graphs
(incl. planar graphs)

(because bounded-genus graphs have O(1)-thin trees)

For symmetric TSP, since 2010, improvements when G is
unweighted (graph TSP). What about ATSP?

O(1)-approximation algorithm for ATSP on unweighted graphs

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



Our results

O(1)-approximation algorithm for ATSP on unweighted graphs

» Implies O(Winax/ Win )-approximation in general — but this
ratio can be unbounded

» Next logical step?
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Our results

O(1)-approximation algorithm for ATSP on unweighted graphs

» Implies O(Winax/ Win )-approximation in general — but this
ratio can be unbounded

» Next logical step?

Svensson, T., Vegh 2016

O(1)-approximation algorithm for ATSP on graphs with two edge
weights

(also a constant bound on the integrality gap)
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Local-Connectivity ATSP

O(1)-approximation algorithm for ATSP on unweighted graphs

follows by:
» defining a new easier problem called Local-Connectivity ATSP
» reduction (technical core of paper):

For any class of graphs, if can approximate Local-Connectivity
ATSP well, then can approximate ATSP well! J

» can indeed approximate Local-Connectivity ATSP well for
unweighted graphs (easy part of paper)
(note similarity with the thin tree approach)
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Local-Connectivity ATSP

O(1)-approximation algorithm for ATSP on unweighted graphs

follows by:
» defining a new easier problem called Local-Connectivity ATSP
» reduction (technical core of paper):

For any class of graphs, if can approximate Local-Connectivity
ATSP well, then can approximate ATSP well! J

» can indeed approximate Local-Connectivity ATSP well for
unweighted graphs (easy part of paper)
(note similarity with the thin tree approach)

For what other classes of graphs can we approximate
Local-Connectivity ATSP well?
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More motivation

» A lot of work to prove the reduction

» But approximating Local-Connectivity ATSP
on unweighted graphs is easy

» Now makes sense to put more work into the latter
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More motivation

» A lot of work to prove the reduction

» But approximating Local-Connectivity ATSP
on unweighted graphs is easy

» Now makes sense to put more work into the latter

Good sign: previously O(1)-approximation for unweighted ATSP
was unknown — now it follows easily
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Pick two

Want the cheapest x : E — R which touches every vertex and is:

integral

minimum
spanning
tree

min-cost
cycle cover

Eulerian Held-Karp connected
relaxation

Everything in the diagram is easy, except for ATSP!
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Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

» Pick cheapest cycle cover (polytime solvable)
» “Contract”
» Repeat
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Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

» Pick cheapest cycle cover (polytime solvable)
» “Contract”
» Repeat

Number of phases = approximation ratio = log n
because connectivity is too weak
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Relaxing connectivity

Repeated cycle cover algorithm [Frieze et al. 1982]

» Pick cheapest cycle cover (polytime solvable)
» “Contract”
» Repeat

Number of phases = approximation ratio = log n
because connectivity is too weak

Find a subproblem which yields stronger
connectivity than min-cost cycle cover
but weaker than ATSP

(maybe not polytime solvable)
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Local-Connectivity ATSP

Given: weighted directed graph G = (V,E,w), w: E — R,
and a partitioning V = V; U ... U VL.

Find a cheap multiset of edges F C E such that the subgraph
(V, F) is Eulerian and each cut (V;, V;) is crossed. J
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Local-Connectivity ATSP

Given: weighted directed graph G = (V,E,w), w: E — R,
and a partitioning V = V; U ... U VL.

Find a cheap multiset of edges F C E such that the subgraph
(V, F) is Eulerian and each cut (V;, V;) is crossed. J

Algorithm is a-light if each component in (V, F) is locally cheap:
gredees o (oversimplified)

# vertices —
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Local-Connectivity ATSP

Framework:

Ib:V — R, with

=
Zvevlb(v) = OPTLP
partitioning V = V4 U ... U V, —
— solution F which is locally cheap

w.r.t. 1b
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Local-Connectivity ATSP

An «-light algorithm for Local-Connectivity ATSP has two phases:

» Given G = (V, E,w), output Ib : V — R with
> vev 1b(v) = OPTyp.

» 1b stands for “lower bound”: a way to distribute the
LP-lower-bound among vertices.
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Local-Connectivity ATSP

An «-light algorithm for Local-Connectivity ATSP has two phases:

» Given G = (V, E,w), output Ib : V — R with
> vev 1b(v) = OPTyp.

» 1b stands for “lower bound”: a way to distribute the
LP-lower-bound among vertices.

» Now, given also a partitioning V = Vj U ... U V,,
find multiset of edges F C E such that:
» subgraph (V, F) is Eulerian,
» each Vj-cutis crossed: |[FNdT(V;)|>1fori=1,..k,

» F is cheap, even Jocally: for each connected component of

weight of edges in component
(V7 F) we have 1b of vertices in component S a.
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Local-Connectivity ATSP

An «-light algorithm for Local-Connectivity ATSP has two phases:
Compared to an a-approximation for ATSP (w.r.t. HK relaxation):

» Given G = (V, E,w), output Ib : V — R with
> vev Ib(v) = OPTrp. (Not present in ATSP.)

» 1b stands for “lower bound”: a way to distribute the
LP-lower-bound among vertices.

» Now, given also a partitioning V = V; U ... U Vi, (not given)
find multiset of edges F C E such that:
» subgraph (V, F) is Eulerian,
» each Vj-cutis crossed: |[FNdT(V;)|>1fori=1,..k,
In ATSP, every cut is crossed: |[FNdt(S)|>1for) CSCV,

» F is cheap, even Jocally: for each connected component of
A .
(V F) we have Weig to e_dges. in component < a.
’ 1b of vertices in component

In ATSP, F is globally cheap: fite) = gpiil <a.
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Local-Connectivity ATSP

Recap:

» the connectivity requirement is relaxed: rather than crossing
all cuts, F only needs to cross each component of the
partition V = Vi U ...U V,,

» the cost requirement is strengthened: rather than being cheap
as a whole, F needs to be cheap locally at each connected
component (w.r.t. some b function).
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Local-Connectivity ATSP

For any class of graphs:

If there is an a-approximation for ATSP (w.r.t. HK relaxation),
then there is an a-light algorithm for Local-Connectivity ATSP.

Output any Ib: V — R such that }° .\, Ib(v) = OPTLp.
Disregard the partitioning and just run the ATSP algorithm.

If its output is globally cheap, it's also locally cheap

(since there is only one connected component). O
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Local-Connectivity ATSP

For any class of graphs:

If there is an a-approximation for ATSP (w.r.t. HK relaxation),
then there is an a-light algorithm for Local-Connectivity ATSP.

Output any Ib: V — R such that }° .\, Ib(v) = OPTLp.
Disregard the partitioning and just run the ATSP algorithm.

If its output is globally cheap, it's also locally cheap

(since there is only one connected component). O

Theorem (Svensson)

If there is an «-light algorithm for Local-Connectivity ATSP, then:

» the integrality gap of the Held-Karp relaxation is at most 5a,

» there is a 9.001a-approximation algorithm for ATSP.
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Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an a-light algorithm for Local-Connectivity ATSP, then:
» the integrality gap of the Held-Karp relaxation is at most b,
» there is a 9.001a-approximation algorithm for ATSP.

And:

There is a 3-light algorithm for Local-Connectivity ATSP
on unweighted graphs.

So:

There is a 27-approximation algorithm for ATSP
on unweighted graphs.
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Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an a-light algorithm for Local-Connectivity ATSP, then:
» the integrality gap of the Held-Karp relaxation is at most b,
» there is a 9.001a-approximation algorithm for ATSP.

If:

There is a O(1)-light algorithm for Local-Connectivity ATSP
on some class of graphs.

Then:

There is a O(1)-approximation algorithm for ATSP
on that class of graphs.
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Local-Connectivity ATSP

For any class of graphs:

Theorem (Svensson)

If there is an a-light algorithm for Local-Connectivity ATSP, then:
» the integrality gap of the Held-Karp relaxation is at most b,
» there is a 9.001a-approximation algorithm for ATSP.

And:
Theorem (Svensson, T., Vegh [IPCO 2016])

There is a O(1)-light algorithm for Local-Connectivity ATSP
on graphs with two edge weights.

So:

There is a O(1)-approximation algorithm for ATSP
on graphs with two edge weights.
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How to solve Local-Connectivity ATSP?

As a warmup, we show:

There is a 3-light algorithm for Local-Connectivity ATSP on
unweighted graphs.

Even simpler: assume the given partitioning is
the singleton partition V = {v;} U...U{v,}.
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How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:
» Ib:V — Ry such that ) ., Ib(v) = OPTyp,
» F C E: Eulerian multiset of edges
such that
» each singleton cut is crossed: |FNd*(v)|>1forallveV,

» locally at each connected component G of (V,F), F is cheap:
|FNE(G)| <3-1b(G).
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How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:
» Ib:V — Ry such that ) ., Ib(v) = OPTyp,
» F C E: Eulerian multiset of edges
such that
» each singleton cut is crossed: |FNd*(v)|>1forallveV,

» locally at each connected component G of (V,F), F is cheap:
|FNE(G)| <3-1b(G).

We round the LP solution x*:
Define Ib so that each node “pays” for its outgoing edges:

Ib(v) == x*(07(v)) = Xecs+(v) Xe J
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How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:
» Ib:V — Ry such that ) .\, Ib(v) = OPTyp,
» F C E: Eulerian multiset of edges
such that
» each singleton cut is crossed: |FNd*(v)|>1forallveV,

» locally at each connected component G of (V,F), F is cheap:
|FNE(G)| <3-1b(G).

We round the LP solution x*:
Define Ib so that each node “pays” for its outgoing edges:

Ib(v) i= X (57(v)) = Leesr(n) % |
And pick an integral solution z = 1 to the circulation problem:

1< z(6F(v)) < [x*(6T(v))] ‘
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How to solve Local-Connectivity ATSP?

Recap of L-C ATSP for unweighted G, singleton partition

Given G = (V, E) (unweighted), want:
» Ib:V — Ry such that ) .\, Ib(v) = OPTyp,
» [ C E: Eulerian multiset of edges
such that
» each singleton cut is crossed: |FNdt(v)| > 1forall v eV,

» locally at each connected component G of (V,F), F is cheap:
|FNE(G)| <3-1b(G).

We round the LP solution x*:
Define Ib so that each node “pays” for its outgoing edges:
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And pick an integral solution z = 1 to the circulation problem:
1< z(0%(v)) < [x*(0F(v))] (z = x* is feasible) |

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights



How to solve Local-Connectivity ATSP?

Define 1b so that each node “pays” for its outgoing edges:
Ib(v) = x*(0%(V)) = Cees () X |

And pick an integral solution z = 1 to the circulation problem:

1 <z(6M(v)) < [x*(67(v))] (z=x*is feasible)J

Left to verify:

» locally at each connected component G of (V,F), F is cheap:
|FNE(G )| <3. lb(G)
True for any GCV:

[FRE(G)| < D 2(87(v) < D [x* (67 (V)] < Y 2x*(6*(v)) = 2Ib(G).

veG veG veG
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How to solve Local-Connectivity ATSP?

Define 1b so that each node “pays” for its outgoing edges:
Ib(v) = x*(0%(V)) = Cees () X |

And pick an integral solution z = 1 to the circulation problem:

1 <z(6M(v)) < [x*(67(v))] (z=x*is feasible)J

Left to verify:
» locally at each connected component G of (V,F), F is cheap:

|FNE(G )| <3. lb(G)
True for any G CcV:
FRE(G) < 3 2(0%(v)) < ST (0 ()] < 3 2x* (5% (v)) = 2Ib(G).
veG veG veG

Crucial: rounding up is fine because x*(67(v)) > 1.
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How to solve Local-Connectivity ATSP?

» Got 2-light algorithm

» Dealing with arbitrary partitions V = V; U ... U V
makes it 3-light
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Two edge weights

» Why not just do the same?

» Black edges are cheap and have x; =1
» Red edges are expensive and have x} = %
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Two edge weights

» Why not just do the same?

» Black edges are cheap and have x; =1
» Red edges are expensive and have x7 = ¢
» In x*, each vertex pays only for % expensive flow:

the thick red solution can’t be paid locally
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Two edge weights

Problem: rounding red x*-flow from ¢ to 1 is too expensive J
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Two edge weights

Problem: rounding red x*-flow from ¢ to 1 is too expensive J

Solution: group small chunks of red x*-flow together and then
round them J

» we use a flow theorem to find a small set T of terminals

» we reroute red x*-flow to these terminals so that any path
that uses an expensive edge must then go a terminal

» we put higher 1b on terminals so the red x*-flow can be paid
for there
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The flow theorem

Let E1: expensive edges.

Theorem

There is a set of terminals T C V and a flow f from the tails of
expensive edges to T which:

> < x*
» f saturates all expensive edges and has value x*(E;)
» T issmall: |T| < 8x*(E;)

The picture shows f.
Red edges are expensive.

o

x* is 1/3 for expensive edges

0

Q%< w><% and 2/3 for cheap (black) edges.
2/3 2/3

| 13 | Terminals T are black.
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Splitting the graph

We use f and T to split G and x*:

G and f
1/3
—_
1/3 1/3
1/3
0 0
1/3
2/3 2/3
1/3
1/3
» copies v! carry the f-flow, copies v carry the rest (x* — f)

» now any cycle with an expensive edge must visit a terminal

And pick an integral solution z = 1 to the circulation problem:

1< 2(5%(v)) < [2¢5(5+(v))] J

Jakub Tarnawski O(1)-Approximation for ATSP with Two Edge Weights




Splitting the graph

» This mostly does the trick for the singleton partitioning.

» More work needed in the general case.
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» What wider classes of graphs admit an O(1)-approximation?
» Even the case of three edge weights is unsolved

» Beat O(log n/ loglog n) for general case
» Can we match the known integrality gap upper bound
O(poly log log n)?
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Thank you for your attention!
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