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Perfect matching problem
Given a graph, can we pair upall vertices using edges?

very tough instance:graph is non-bipartite!
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Perfect matching problem
Benchmark problem in computer science
Algorithms:
I bipartite: Jacobi [XIX century, weighted!]
I general: Edmonds [1965]

I polynomial-time = efficient
I since then, tons of researchand still active
I many models of computation:monotone circuits, extended formulations,parallel, distributed, streaming/sublinear, ...
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Parallel complexity
Class NC: problems that paralellize completely

poly n processors

poly log n time

it’s in Randomized NC

Main open question: is matching in NC?
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Parallel complexity
I Matching is in Randomized NC [Lovász 1979]:has randomized algorithm that uses:

I polynomially many processors
I polylog time

I Search version is in Randomized NC:
I [Karp, Upfal, Wigderson 1986]
I [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomizeall efficient computation?

Is matching in NC?

first matching algorithmto use Tutte’s matrixand Zippel-Schwartz Lemmaled to understanding ofcomputational relationship betweensearch and decision problems
introducedthe Isolation Lemma
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Is matching in NC?
Yes, for restricted graph classes:

I bipartite regular [Lev, Pippenger, Valiant 1981]
I bipartite convex [Dekel, Sahni 1984]
I incomparability graphs [Kozen, Vazirani, Vazirani 1985]
I bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
I claw-free [Chrobak, Naor, Novick 1989]
I K3,3-free (decision version) [Vazirani 1989]
I planar bipartite [Miller, Naor 1989]
I dense [Dahlhaus, Hajnal, Karpinski 1993]
I strongly chordal [Dahlhaus, Karpinski 1998]
I P4-tidy [Parfenoff 1998]
I bipartite small genus [Mahajan, Varadarajan 2000]
I graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
I planar (search version) [Anari, Vazirani 2017]

but not known for:
I general

I bipartite
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Is matching in NC?
Fenner, Gurjar and Thierauf [2015] showed:
I Bipartite matching is in quasi-NC(npoly log n processors, poly log n time, deterministic)

I Approach fails for non-bipartite graphs
much harder than
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Our result
We show: general matching is in quasi-NC:
I npoly log n processors
I poly log n time
I deterministic
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Outline
1 Isolating weight functions[Mulmuley, Vazirani, Vazirani 1987]
2 Bipartite case[Fenner, Gurjar, Thierauf 2015]
3 Difficulties of general case& our approach
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1. Isolating weight functions[Mulmuley, Vazirani, Vazirani 1987]
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Isolating weight functions

Difficulty:too many possible perfect matchings

Tried weights?

Solution: look for a min-weight perfect matching
Weight function w : E → Z+ is isolatingif there is a unique min-weight perfect matching
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[Mulmuley, Vazirani, Vazirani 1987]

isolating weight function

matching

determinant computationin NC

random sampling
Isolation Lemma

something deterministic?
?
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Isolating weight functions
Weight function w : E → Z+ is isolatingif there is a unique perfect matching M with minimum w (M)
Mulmuley, Vazirani and Vazirani [1987]Given isolating w , can find perfect matching in NC

1 2
3 4

T

w

(G ) =


0
− 0 0
− 0 0
− − − 0


I build Tutte’s matrix with entries Xuv

:= 2w (u,v )

I detT (G ) 6= 0 (as polynomial) ⇐⇒ graph has perfect matching

I detTw (G ) 6= 0 (as scalar) ⇐⇒ graph has perfect matching
I we can compute determinant in NC

(if w poly-bounded)

Why not just use
w (ei ) = 2i?

It’s clearly isolating...
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Isolation Lemma
Weight function w : E → Z+ is isolatingif there is a unique min-weight perfect matching

Isolation Lemma [MVV 1987]If each w (e) picked randomly from {1, 2, ..., n3},then P[w isolating] ≥ 1− 1
n

I holds more generally,for any set family in place of matchings!
I many applications in complexity theory
I related to Polynomial Identity Testing
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Derandomize the Isolation Lemma
I Challenge:get an isolating weight functiondeterministically in NC
I We prove:can construct nO(log2 n) weight functions in quasi-NCsuch that one of them is isolating
I We do it without looking at the graph
I Implies: matching is in quasi-NC

Special case of derandomizing Polynomial Identity Testing– for the polynomial being detT (G )
Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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2. Bipartite case[Fenner, Gurjar, Thierauf 2015]
Goal: how to construct nO(log n) weight functionssuch that one of them is isolating?
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Isolating matchingsWhat if w is not isolating?
I there are perfect matchings M , M ′with w (M) = w (M ′) minimum

I symmetric difference= alternating cycles
I in each cycle C ,

w (GREEN) = w (RED)(otherwise could get lighter matching)
I define discrepancy of a cycle:

dw (C ) := w (GREEN)− w (RED)
I dw (C ) = 0

C

If (∀C ) dw (C ) 6= 0, then w isolating!
New objective: assign 6= 0 discrepancy to every cycle
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Removing cycles
New objective: assign 6= 0 discrepancy to every cycle

LemmaThere is a poly-sized set W of weight functions such that:
for any n4 cycles,
some w ∈ Wassigns all of them 6= 0 discrepancy.
Actually, we do use powers of two:
W = {wk : k = 2, 3, ..., n6} where wk (ei ) = 2i mod k

If ≤ n4 cycles in the graph: done!
Not so easy, but we can cope with all 4-cycles.

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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Removing cycles

Active subgraph:those edges that are in a min-weight perfect matching
Bipartite key propertyOnce we assign a cycle 6= 0 discrepancy,it will disappear from the active subgraph.

0

3

0

1 1

1 1
dw (C1) = 1 6= 0
dw (C2) = 1 6= 0

C2

C1

=⇒
That is, any perfectmatching in the activesubgraph is min-weight.

By assigning 6= 0 discrepancy to 4-cycles, we can remove them.Then continue restricted to the smaller active subgraph!

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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Proof of bipartite key property
Bipartite key propertyOnce we assign a cycle 6= 0 discrepancy,it will disappear from the active subgraph.
Proof:

I LetM be the set of perfect matchings minimizing w

I Consider the convex hull ofM (face F of the bipartite matching polytope):

PM : perfect matching polytope (convex hull of matchings)

w

Bipartite PM

x(δ(v )) = 1 for every v ∈ V

xe ≥ 0 for every e ∈ E

F is simply a subgraph

I What can we say about the weight of points in F?

Every x , y ∈ F have same weight: ∑e w (e)xe =∑e w (e)ye

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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F

PM : perfect matching polytope (convex hull of matchings)

w

Bipartite PM

x(δ(v )) = 1 for every v ∈ V

xe ≥ 0 for every e ∈ E

F is simply a subgraph

F is the convex hull ofM ⇒ every x , y ∈ F have same weight

I Suppose active subgraph(edge set ⋃M∈MM)has cycle C of 6= 0 discepancy
C w (green edges) 6= w (red edges)

I Let x = 1
|M|
∑

M∈M 1M be the mean of the face F

I Then xe > 0 for every e ∈ C (since support of x equals ⋃M∈MM)
I Increasing red edges while decreasing green maintains degrees
I So we obtain a new point y ∈ F of different weight; contradiction

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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Isolating in stages

w = w1

LemmaThere is a poly-sized set
W of weight functionssuch that:
for any n4 cycles,
some w ∈ Wassigns all of them 6= 0discrepancy.

Counting argumentNo cycles of length ≤ r=⇒ only n4 cycles oflength ≤ 2r

I active subgraph has ≤ n4 4-cycles
I apply w1 ∈ W

I active subgraph has no 4-cycles
I active subgraph has ≤ n4 8-cycles
I apply w2 ∈ W

I active subgraph has no 8-cycles
I active subgraph has ≤ n4 16-cycles

I apply w3 ∈ W
I active subgraph has no 16-cycles

I ...
I apply wlog n ∈ W
I active subgraph has no cycleswhatsoever
I success!

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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Isolating in stages
w = 〈w1,w2, ...,wlog n〉

I For each stage i , some wi ∈ W removes the wanted cycles
I So some concatenation 〈w1,w2, ...,wlog n〉 is isolating
I But not sure how to check in NC if given wi is good...

The oblivious algorithm checks all concatenations:
|W|log n = nO(log n)

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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3. Difficulties of general case& our approach
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Bipartite key property fails

Bipartite key propertyOnce we assign a cycle 6= 0 discrepancy,it will disappear from the active subgraph.
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Polyhedral perspective
I PM: perfect matching polytope(convex hull of all perfect matchings)

I F: set of points in PM that minimize w

I F is a face of PM
I w isolating ⇐⇒ |F| = 1 (F is a vertex)

PM

F

w

want to avoid a zero-measure set deterministically(similar to Polynomial Identity Testing)
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Polyhedral perspective
1

F1 w1

2

w2

F2

3

F2

w3F3

isolating in stages=decreasing sequence of faces

decreasing fast due to the bipartite matching polytope:
I bipartite key property: every face is a subgraph
I so girth doubles at every step

F1

F2
F3

w = w1

w = 〈w1,w2〉

w = 〈w1,w2,w3〉

w is isolating
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LP formulation
Edmonds [1965]PM described as set of x ∈ RE such that:
I xe ≥ 0 for every edge e

I x(δ(v )) = 1 for every vertex v

I x(δ(S)) ≥ 1 for every odd set S of vertices

So every face F is given as:
F = {x ∈ PM : xe = 0 for some edges e,

x(δ(S)) = 1 for some odd sets S}

(δ(S) = edges crossing S)

Bipartite key property fails!

I In bipartite case:
F = {x ∈ PM : xe = 0 for some edges e}(F given by the active subgraph)

I Now, faces are exponentially harder
I Need 2Ω(n) inequalities [Rothvoss 2013]

F

PM
Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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How bipartite key property fails

S

1

1

1

0
0

0
0
0

0

C

want:
dw (C ) 6= 0dw (C ) = 2 6= 0

PM: convex hull of all four matchings:
F: convex hull of matchings of weight 1:

F ( PM but still has all edges...F ( PM but still has all edges...
F = {x ∈ PM : x(δ(S)) = 1}
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How we cope

technical path

Main ingredients:
I Laminar family of tight cut constraints
I Tight cut constraints decompose the instance

⇒ divide-and-conquer approach
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Laminarity
Every face F is given as:

F = {x ∈ PM : xe = 0 for some edges e,
x(δ(S)) = 1 for some odd sets S}

Great news: “some” can be chosen to be a laminar family!
(at most n/2 constraints instead of exponentially many to describe a face)

Ola Svensson, Jakub Tarnawski Matching is in quasi-NC
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Laminarity

F2

F1

face ∼ (edge subset, laminar family)
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Tight odd cuts are not all bad
exactly one edge crossing

I once we fix a boundary edge...

I ... the instance decomposes into two independent ones
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Divide & conquer
Simplest case of laminar family: only one tight odd set
Between friends: cycles that do not cross tight odd setsbehave like in the bipartite case and can thus be removed

I then every boundary edge determines entire matching

I so: at most n2 perfect matchings
I some w ∈ W will give them different weights
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Divide & conquer: chain caseAs before we isolate the entire instance in O(log n) phases

e

e . . .
n2 choices

f

f. . .
n2 choices

Instance where bothsides of the cut are isolated.One w ∈ W′ makes the entiresubinstance isolated
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technical path
harder than

By carefully selecting our progress measure,
we reduce the general laminar case to:
I Removing cycles (similar to bipartite case)
I The chain case (divide & conquer)

Theorem [Svensson, T. 2017]General matching is in quasi-NC:
I npoly log n processors
I poly log n time
I deterministic
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Future work
I go down to NC

I even for bipartite graphs
X for planar graphs: [Anari, Vazirani 2017]

I derandomize Isolation Lemma in other cases
X matroid intersection: [Gurjar, Thierauf 2017]
X totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]
I any efficiently solvable 0/1-polytope?

Exact MatchingGiven: graph with some edges red, number k .Is there a perfect matching with exactly k red edges?
I randomized complexity: even Randomized NC
I deterministic complexity: is it in P?

Thank you!
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