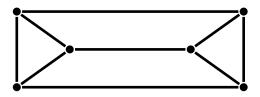
The Matching Problem in General Graphs is in QUASI-NC

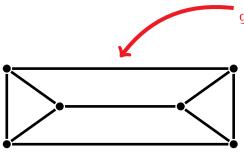
Jakub Tarnawski joint work with Ola Svensson

October 16, 2017

Given a graph, can we pair up all vertices using edges?

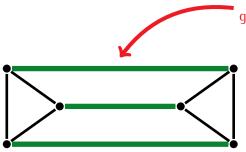


Given a graph, can we pair up all vertices using edges?



very tough instance: graph is non-bipartite!

Given a graph, can we pair up all vertices using edges?



very tough instance: graph is non-bipartite!

Benchmark problem in computer science

Algorithms:

▶ bipartite: Jacobi [XIX century, weighted!]

general: Edmonds [1965]

- since then, tons of research and still active
- many models of computation: monotone circuits, extended formulations, parallel, distributed, streaming/sublinear, ...

Benchmark problem in computer science

Algorithms:

▶ bipartite: Jacobi [XIX century, weighted!]

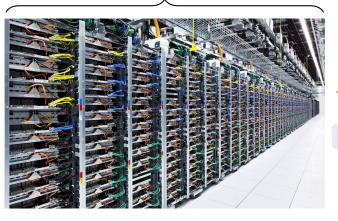
general: Edmonds [1965]

- since then, tons of research and still active
- many models of computation: monotone circuits, extended formulations, parallel, distributed, streaming/sublinear, ...



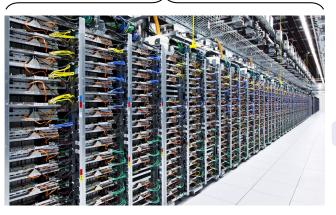
Class \mathcal{NC} : problems that paralellize completely

poly *n* processors



Class \mathcal{NC} : problems that paralellize completely

poly *n* processors



Main open question: is matching in \mathcal{NC} ?

Class \mathcal{NC} : problems that paralellize completely

poly *n* processors

Main open question: is matching in \mathcal{NC} ?

- Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]: has randomized algorithm that uses:
 - polynomially many processors
 - polylog time
- ► Search version is in RANDOMIZED \mathcal{NC} :
 - ► [Karp, Upfal, Wigderson 1986]
 - ▶ [Mulmuley, Vazirani, Vazirani 1987]

- Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]: has randomized algorithm that uses:
 - polynomially many processors
 - polylog time
- ▶ Search version is in RANDOMIZED \mathcal{NC} :
 - ► [Karp, Upfal, Wigderson 1986]
 - ▶ [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize all efficient computation?

- Matching is in RANDOMIZED \mathcal{NC} [Lovász 1979]: has randomized algorithm that uses:
 - polynomially many processors
 - polylog time
- ▶ Search version is in RANDOMIZED \mathcal{NC} :
 - ► [Karp, Upfal, Wigderson 1986]
 - ▶ [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize all efficient computation?

Can we derandomize one of these algorithms?

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- ▶ bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- K_{3,3}-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P₄-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- ▶ bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- K_{3,3}-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P₄-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

but not known for:

general

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- K_{3,3}-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P₄-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

but not known for:

- general
- bipartite

Fenner, Gurjar and Thierauf [2015] showed:

▶ Bipartite matching is in QUASI- \mathcal{NC} ($n^{\text{polylog }n}$ processors, polylog n time, deterministic)

Fenner, Gurjar and Thierauf [2015] showed:

▶ Bipartite matching is in QUASI- \mathcal{NC} ($n^{\text{polylog }n}$ processors, polylog n time, deterministic)

► Approach fails for non-bipartite graphs

Our result

We show: general matching is in QUASI- \mathcal{NC} :

- $ightharpoonup n^{poly \log n}$ processors
- ▶ poly log *n* time
- ▶ deterministic

Outline

Isolating weight functions [Mulmuley, Vazirani, Vazirani 1987]

② Bipartite case [Fenner, Gurjar, Thierauf 2015]

Difficulties of general case& our approach

Isolating weight functions [Mulmuley, Vazirani, Vazirani 1987]

Make it weighted

Make it weighted

Make it weighted

How to solve unweighted problem?

MAKE LIFE HARDER

But we choose the weight function – do it smartly!

Make it weighted

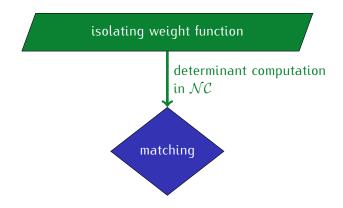
How to solve unweighted problem?

MAKE LIFE HARDER

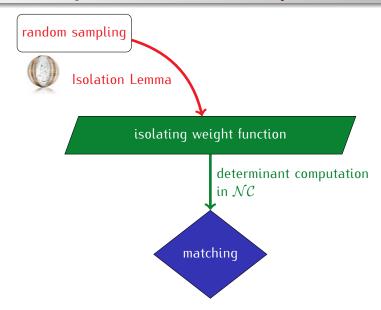
But we choose the weight function – do it smartly!

Weight function $w: E \to \mathbb{Z}_+$ is **isolating** if there is a **unique** min-weight perfect matching

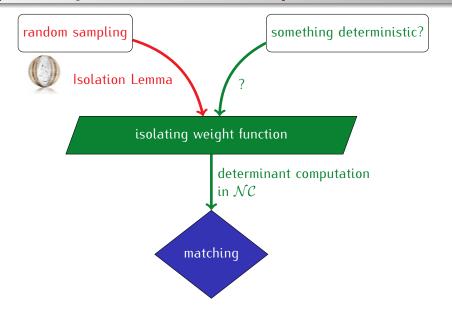
[Mulmuley, Vazirani, Vazirani 1987]



[Mulmuley, Vazirani, Vazirani 1987]



[Mulmuley, Vazirani, Vazirani 1987]



Isolation Lemma

Weight function $w: E \to \mathbb{Z}_+$ is **isolating** if there is a **unique** min-weight perfect matching

Isolation Lemma [MVV 1987]

If each w(e) picked randomly from $\{1, 2, ..., n^3\}$, then $P[w \text{ isolating}] \ge 1 - \frac{1}{n}$

Isolation Lemma

Weight function $w: E \to \mathbb{Z}_+$ is **isolating** if there is a **unique** min-weight perfect matching

Isolation Lemma [MVV 1987]

If each w(e) picked randomly from $\{1, 2, ..., n^3\}$, then $P[w \text{ isolating}] \ge 1 - \frac{1}{n}$

- holds more generally, for any set family in place of matchings!
- many applications in complexity theory

Derandomize the Isolation Lemma

- ► Challenge: get an isolating weight function deterministically in NC
- ▶ We prove: can construct $n^{O(\log^2 n)}$ weight functions in QUASI-NC such that one of them is isolating
- ► We do it without looking at the graph
- ▶ Implies: matching is in QUASI- \mathcal{NC}

Derandomize the Isolation Lemma

- ► Challenge: get an isolating weight function deterministically in NC
- ▶ We prove: can construct $n^{O(\log^2 n)}$ weight functions in QUASI- \mathcal{NC} such that one of them is isolating
- ▶ We do it without looking at the graph
- ▶ Implies: matching is in QUASI- \mathcal{NC}

2. Bipartite case [Fenner, Gurjar, Thierauf 2015]

Goal: how to construct $n^{O(\log n)}$ weight functions such that one of them is isolating?

Isolating matchings

What if w is **not** isolating?

► there are perfect matchings M, M' with w(M) = w(M') minimum

- •
- •
- •
- •
- •

Isolating matchings

What if w is **not** isolating?

► there are perfect matchings M, M' with w(M) = w(M') minimum

What if w is **not** isolating?

► there are perfect matchings M, M' with w(M) = w(M') minimum

- ▶ there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric differencealternating cycles

- ► there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric differencealternating cycles
- in each cycle C,
 w(GREEN) = w(RED)
 (otherwise could get lighter matching)

- ► there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric differencealternating cycles
- in each cycle C, w(GREEN) = w(RED) (otherwise could get lighter matching)
- ▶ define **discrepancy** of a cycle: $d_w(C) := w(\mathsf{GREEN}) w(\mathsf{RED})$

- ► there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric differencealternating cycles
- in each cycle C, w(GREEN) = w(RED) (otherwise could get lighter matching)
- ▶ define **discrepancy** of a cycle: $d_w(C) := w(GREEN) - w(RED)$
- $d_w(C) = 0$

What if w is **not** isolating?

- ► there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric differencealternating cycles
- in each cycle C, w(GREEN) = w(RED) (otherwise could get lighter matching)
- ▶ define **discrepancy** of a cycle: $d_w(C) := w(\mathsf{GREEN}) w(\mathsf{RED})$
- $ightharpoonup d_w(C) = 0$

If $(\forall C) d_w(C) \neq 0$, then w isolating!

What if w is **not** isolating?

- \triangleright there are perfect matchings M, M' with w(M) = w(M') minimum
- symmetric difference = alternating cycles
- ▶ in each cycle C, w(GREEN) = w(RED)(otherwise could get lighter matching)
- define discrepancy of a cycle: $d_w(C) := w(GREEN) - w(RED)$
- $ightharpoonup d_w(C)=0$

If $(\forall C)$ $d_w(C) \neq 0$, then w isolating!

New objective: assign $\neq 0$ discrepancy to every cycle

New objective: assign $\neq 0$ discrepancy to every cycle

New objective: assign $\neq 0$ discrepancy to every cycle

Lemma

For any n^4 cycles, can find a weight function w that assigns all of them $\neq 0$ discrepancy.

New objective: assign $\neq 0$ discrepancy to every cycle

Lemma

For any n^4 cycles, can find a weight function w that assigns all of them $\neq 0$ discrepancy.

New objective: assign $\neq 0$ discrepancy to every cycle

Lemma

For any n^4 cycles, can find a weight function w that assigns all of them $\neq 0$ discrepancy.

If $\leq n^4$ cycles in the graph: done!

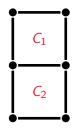
New objective: assign $\neq 0$ discrepancy to every cycle

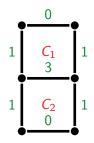
Lemma

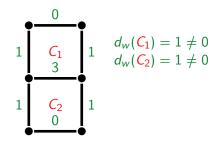
For any n^4 cycles, can find a weight function w that assigns all of them $\neq 0$ discrepancy.

If $\leq n^4$ cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles.

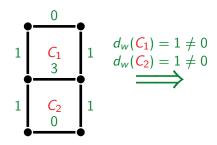






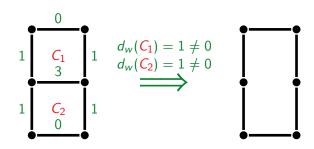
Active subgraph:

those edges that are in a min-weight perfect matching



Active subgraph:

those edges that are in a min-weight perfect matching

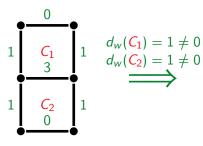


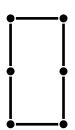
Active subgraph:

those edges that are in a min-weight perfect matching

Bipartite key property

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.



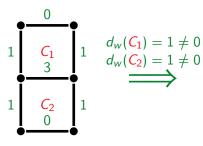


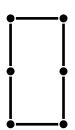
Active subgraph:

those edges that are in a min-weight perfect matching

Bipartite key property

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.



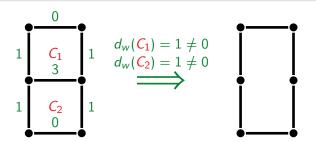


Active subgraph:

those edges that are in a min-weight perfect matching

Bipartite key property

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.



By assigning $\neq 0$ discrepancy to 4-cycles, we can remove them. Then continue restricted to the smaller active subgraph!

Crucial idea:

► Can find w_1 such that 4-cycles are assigned $\neq 0$ discrepancy

Crucial idea:

► Can find w_1 such that 4-cycles are removed from active subgraph

- ▶ Can find w₁ such that 4-cycles are removed from active subgraph
- ► Can find w_2 such that (\leq 8)-cycles are removed from active subgraph
- ▶ Can find w_3 such that (≤ 16)-cycles are removed from active subgraph
- ..
- ► Can find $w_{\log n}$ such that all cycles are removed from active subgraph \Longrightarrow done!

- ▶ Can find w₁ such that 4-cycles are removed from active subgraph
- ► Can find w_2 such that (\leq 8)-cycles are removed from active subgraph
- ► Can find w_3 such that (≤ 16)-cycles are removed from active subgraph
- ..
- ► Can find $w_{\log n}$ such that all cycles are removed from active subgraph \Longrightarrow done!

- ▶ Can find w₁ such that 4-cycles are removed from active subgraph
- ► Can find w_2 such that (\leq 8)-cycles are removed from active subgraph
- ► Can find w_3 such that (≤ 16)-cycles are removed from active subgraph
- **.**..
- ► Can find $w_{\log n}$ such that all cycles are removed from active subgraph \Longrightarrow done!

- ▶ Can find w₁ such that 4-cycles are removed from active subgraph
- ► Can find w_2 such that (\leq 8)-cycles are removed from active subgraph
- ▶ Can find w_3 such that (≤ 16)-cycles are removed from active subgraph
- **...**
- ► Can find $w_{\log n}$ such that all cycles are removed from active subgraph \Longrightarrow done!

Crucial idea:

- ► Can find w_1 such that 4-cycles are removed from active subgraph
- ► Can find w_2 such that (\leq 8)-cycles are removed from active subgraph
- ▶ Can find w_3 such that (≤ 16)-cycles are removed from active subgraph
- **...**
- ► Can find $w_{\log n}$ such that all cycles are removed from active subgraph \Longrightarrow done!

Actually, not sure how to find in \mathcal{NC} some w_i that is good... But always some w_i of a special form is good. Try all combinations $(w_1, w_2, ..., w_{\log n})$ obliviously! There are $n^{O(\log n)}$ many.

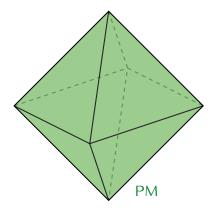
3. Difficulties of general case & our approach

Bipartite key property fails

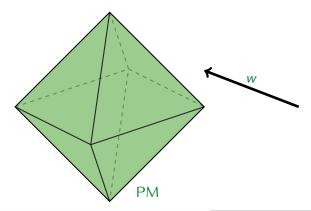
Bipartite key property

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.

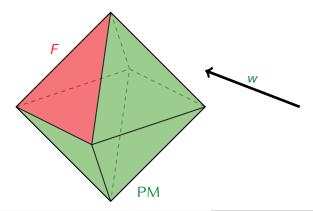
► PM: perfect matching polytope (convex hull of all perfect matchings)



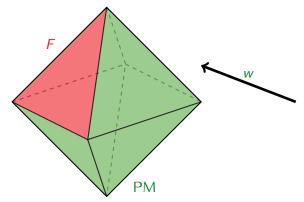
► PM: perfect matching polytope (convex hull of all perfect matchings)



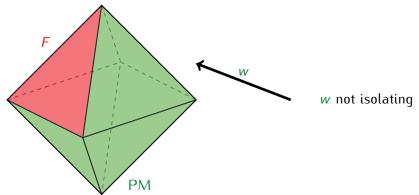
- PM: perfect matching polytope (convex hull of all perfect matchings)
- \triangleright *F*: set of points in PM that minimize *w*
 - F is a face of PM



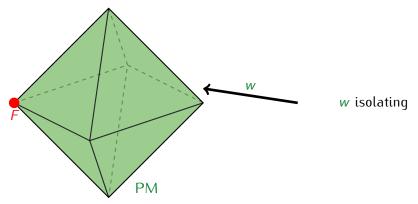
- PM: perfect matching polytope (convex hull of all perfect matchings)
- \blacktriangleright *F*: set of points in PM that minimize *w*
 - ▶ *F* is a face of PM
- w isolating $\iff |F| = 1$ (F is a vertex)



- PM: perfect matching polytope (convex hull of all perfect matchings)
- \triangleright *F*: set of points in PM that minimize *w*
 - F is a face of PM
- w isolating $\iff |F| = 1$ (F is a vertex)



- PM: perfect matching polytope (convex hull of all perfect matchings)
- \triangleright *F*: set of points in PM that minimize *w*
 - F is a face of PM
- w isolating $\iff |F| = 1$ (F is a vertex)

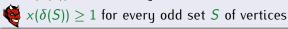


LP formulation

Edmonds [1965]

PM described as set of $x \in \mathbb{R}^E$ such that:

- $ightharpoonup x_e \ge 0$ for every edge e
- \triangleright $x(\delta(v)) = 1$ for every vertex v
- $(\delta(S) = \text{edges crossing } S)$



IP formulation

Edmonds [1965]

PM described as set of $x \in \mathbb{R}^E$ such that:

- $\triangleright x_e \ge 0$ for every edge e
- \triangleright $\times (\delta(v)) = 1$ for every vertex v

 $(\delta(S) = \text{edges crossing } S)$

 $(\delta(S)) \ge 1$ for every odd set S of vertices

So every face *F* is given as:

$$F = \{x \in PM : x_e = 0$$
 for some edges e ,
 $x(\delta(S)) = 1$ for some odd sets $S\}$

IP formulation

Edmonds [1965]

PM described as set of $x \in \mathbb{R}^E$ such that:

- $ightharpoonup x_e \ge 0$ for every edge e
- \triangleright $\times (\delta(v)) = 1$ for every vertex v

 $(\delta(S) = \text{edges crossing } S)$

 $(\delta(S)) \ge 1$ for every odd set S of vertices

So every face *F* is given as:

$$F = \{x \in PM : x_e = 0$$
 for some edges e , $x(\delta(S)) = 1$ for some odd sets $S\}$

- In bipartite case:
 - $F = \{x \in PM : x_e = 0 \text{ for some edges } e\}$ (F given by the active subgraph)
- Now, faces are exponentially harder
- ▶ Need $2^{\Omega(n)}$ inequalities [Rothvoss 2013]

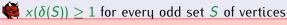
LP formulation

Edmonds [1965]

PM described as set of $x \in \mathbb{R}^E$ such that:

- $ightharpoonup x_e \ge 0$ for every edge e
- \triangleright $x(\delta(v)) = 1$ for every vertex v

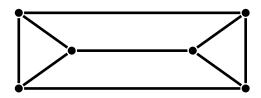
 $(\delta(S) = \text{edges crossing } S)$

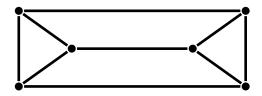


Bipartite key property fails!

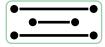
$$x(\delta(S)) = 1$$
 for some odd sets S }

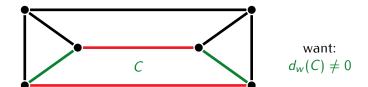
- ▶ In bipartite case: $F = \{x \in PM : x_e = 0 \text{ for some edges } e\}$ (F given by the active subgraph)
- ▶ Now, faces are exponentially harder
- ▶ Need $2^{\Omega(n)}$ inequalities [Rothvoss 2013]



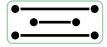


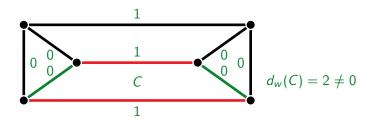
PM: convex hull of all four matchings:



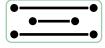


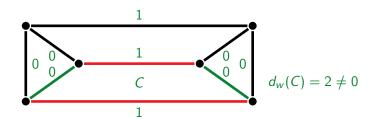
PM: convex hull of all four matchings:



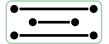


PM: convex hull of all four matchings:

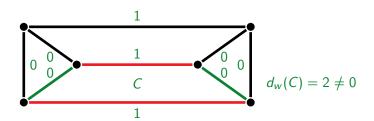


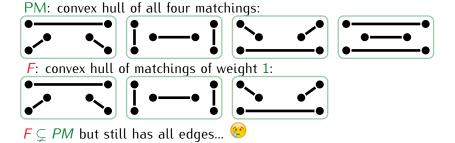


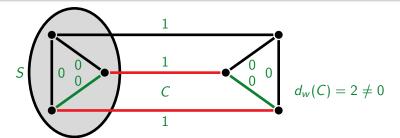
PM: convex hull of all four matchings:



F: convex hull of matchings of weight 1:





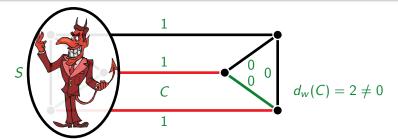


PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

 $F \subseteq PM$ but still has all edges...

$$F = \{x \in PM : x(\delta(S)) = 1\}$$



PM: convex hull of all four matchings:

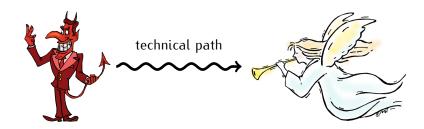
F: convex hull of matchings of weight 1:

 $F \subseteq PM$ but still has all edges...

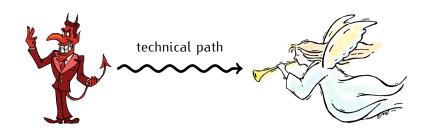
$$F = \{x \in PM : x(\delta(S)) = 1\}$$

How we cope

How we cope



How we cope



Main ingredients:

- ► Laminar family of tight cut constraints
- ► Tight cut constraints decompose the instance
 - \Rightarrow divide-and-conquer approach

Laminarity

Every face F is given as:

$$F = \{x \in PM : x_e = 0$$
 for some edges e , $x(\delta(S)) = 1$ for some odd sets $S\}$

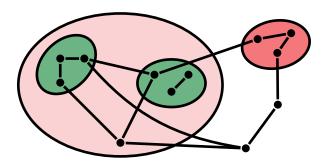
Laminarity

Every face *F* is given as:

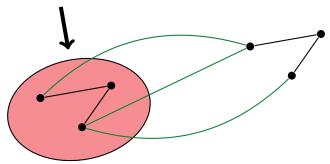
$$F = \{x \in PM : x_e = 0$$
 for some edges e ,
 $x(\delta(S)) = 1$ for some odd sets $S\}$

Great news: "some" can be chosen to be a laminar family!

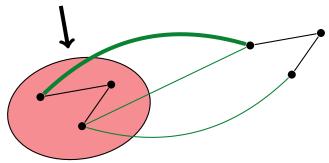
(at most n/2 constraints instead of exponentially many to describe a face)



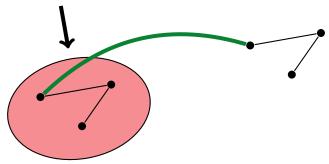
exactly one edge crossing



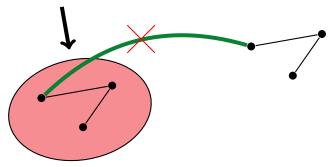
exactly one edge crossing



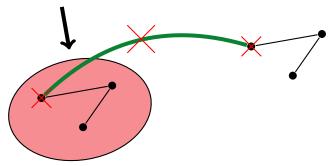
exactly one edge crossing

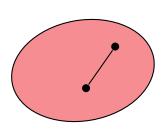


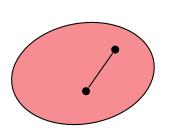
exactly one edge crossing



exactly one edge crossing





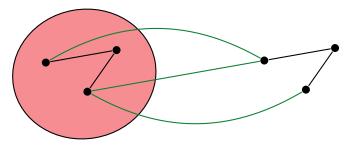


- once we fix a boundary edge...
- ... the instance decomposes into two independent ones

- once we fix a boundary edge...
- ... the instance decomposes into two independent ones

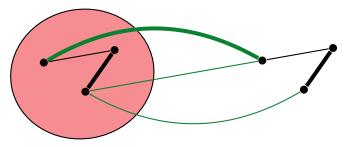
Simplest case of laminar family: only one tight odd set

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



Simplest case of laminar family: only one tight odd set

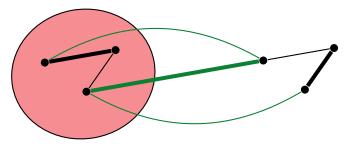
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



▶ then every boundary edge determines entire matching

Simplest case of laminar family: only one tight odd set

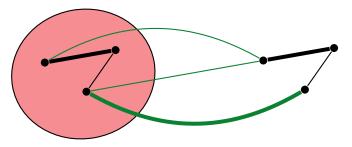
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



▶ then every boundary edge determines entire matching

Simplest case of laminar family: only one tight odd set

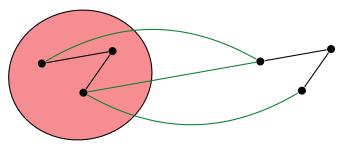
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



▶ then every boundary edge determines entire matching

Simplest case of laminar family: only one tight odd set

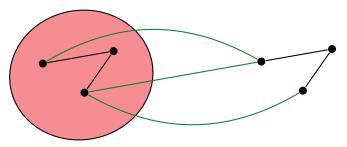
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



- then every boundary edge determines entire matching
- \triangleright so: at most n^2 perfect matchings

Simplest case of laminar family: only one tight odd set

Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed



- ▶ then every boundary edge determines entire matching
- \triangleright so: at most n^2 perfect matchings
- easy to isolate

Our dichotomy

Dichotomy:

- remove cycles not crossing tight odd-sets
- use tight odd-sets to decompose problem (divide & conquer)

Our dichotomy

Dichotomy:

- remove cycles not crossing tight odd-sets
- use tight odd-sets to decompose problem (divide & conquer)

Details: see paper or talk to me:)

- ightharpoonup go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]

- ightharpoonup go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases
 - √ matroid intersection: [Gurjar, Thierauf 2017]
 - √ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]
 - any efficiently solvable 0/1-polytope?

- ightharpoonup go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases
 - √ matroid intersection: [Gurjar, Thierauf 2017]
 - √ t<mark>otally u</mark>nimodular polytopes: [Gurjar, Thie<mark>rauf, Vis</mark>hnoi 2017]
 - any efficiently solvable 0/1-polytope?

Exact Matching

Given: graph with some edges red, number k. Is there a perfect matching with exactly k red edges?

- ightharpoonup randomized complexity: even Randomized \mathcal{NC}
- ▶ deterministic complexity: is it in P?

- ightharpoonup go down to \mathcal{NC}
 - even for bipartite graphs
 - √ for planar graphs: [Anari, Vazirani 2017]
- derandomize Isolation Lemma in other cases
 - √ matroid intersection: [Gurjar, Thierauf 2017]
 - √ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]
 - any efficiently solvable 0/1-polytope?

Exact Matching

Given: graph with some edges red, number k. Is there a perfect matching with exactly k red edges?

- ightharpoonup randomized complexity: even Randomized \mathcal{NC}
- ▶ deterministic complexity: is it in P?

Thank you!