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Monotone Submodular Function
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Maximizing     under Cardinality Constraint
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Maximizing     under Matroid Constraint

Matroid Constraint



Fair Streaming Setting
● Elements arrive on a stream.

● We have limited memory.

● Each element has a color.

● We are given lower and upper bound constraint for each color.
○ The minimum and maximum number of elements that we can pick from each color.
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Find a solution such that
1. Number of blue elements in range [1, 2]
2. Number of red elements is in range [0, 3]
3. The solution belongs to a matroid
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The bounds are not constants



Our Results

A tight    -approximation 
algorithm with exponential 

memory



Our Results

A tight    -approximation 
algorithm with exponential 

memory



Memory Usage

What if we want to use less memory?
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Second pass: Improve the quality of the solution



1. Divide the solution into two so that 
the lower bounds are violated by at 
most a factor two.

2. Extend these two sets by adding good 
elements to them without violating 
upper bounds and matroid constraint.

3. Return the best solution.
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Second pass: Improve the quality of the solution

How can we do this?

Matroid intersection
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Open Directions

1. Other constraints 

○ Knapsack constraint

 

2. Single pass algorithm with efficient memory

3. Stronger impossibility results


