Fairness in Streaming Submodular
Maximization over a Matroid Constraint

Marwa El Halabi Samsung - SAIT Al Lab, Montreal
Federico Fusco Sapienza University of Rome
Ashkan Norouzi-Fard Google Research
Jakab Tardos coogle

Jakub Tarnawski Mmicrosoft Research

Monotone Submodular Function

Ground Set

\
f:2Y - RT

Monotone Submodular Function

Ground Set

\
f:2" = R" O§f(6|X)

Any set X and element e

Monotone Submodular Function

Groe\nd Set Diminishing Returns
f:2" = R" f(e\)l(UY)gf(e|X)

Any sets X, Y and element e

Monotone Submodular Function

Influence Maximization Image Summarization

Maximizing f under Cardinality Constraint

maX|S|‘<kf(S>

Cardinality Constraint

Maximizing f under Matroid Constraint

max f(5)

|

Matroid Constraint

Fair Streaming Setting

e Elements arrive on astream.
e We have limited memory.
e Eachelement has acolor.

e We are given lower and upper bound constraint for each color.
o The minimum and maximum number of elements that we can pick from each color.

Fair Streaming Setting

Find a solution such that
1. Number of blue elements in range [1, 2]
2. Number of red elements is in range [0, 3]
3. The solution belongs to a matroid

Fair Streaming Setting

Find a solution such that
1. Number of blue elements in range [1, 2]
2. Number of red elements is in range [0, 3] — The bounds are not constants
3. The solution belongs to a matroid

Our Results

1
A tight 5-approximation
algorithm with exponential
memory

Our Results

A ticht 1 imati Theorem 1.1. For any constant n) € (0,1/2), there exists
|.g 2 -a!:)prOX|ma 1on a one-pass streaming (1/2 — n)-approximation algorithm
algorlthm with exponentlal for FMMSM that uses 90(k*+klog O) -log A memory, where

— maxccv f(e)

memory A= mingcecv|f(e)>o} f(€)

Memory Usage

What if we want to use less memory?

Our Results

It is not possible to use efficient
memory even if we make multiple
passes

Our Results

It is not possible to use efficient Theorem 1.2. Any (randomized) o(+/log C)-pass stream-

) . ing algorithm that determines the existence of a feasible
memory even if we make mUItlpIe solution for FMMSM with probability at least 2/3 requires

passes max(k, C)2~°1) memory.

Our Results

If we violate the lower bounds we
can get a high solution with
guadratic memory usage in two
passes over the stream

Our Results

If we violate the lower bounds we
can get a high solution with
guadratic memory usage in two
passes over the stream

Theorem 1.3. There exists a two-pass streaming algorithm
for FMMSM that runs in polynomial time, uses O(k - C')
memory, and outputs a set S such that (i) S is independent,
() it holds that |(./2] < |V.N S| < u, for any color
e=1,...,0, and (iit) f(S) > OPT/11.656.

Our Results

Even with more violations, it is
not possible to get efficient
algorithms.

Our Results

Even with more violations, it is
not possible to get efficient
algorithms.

Theorem 1.4. There is no one-pass semi-streaming algo-
rithm that determines the existence of a feasible solution for
FMMSM with probability at least 2 /3, even if it is allowed
to violate the fairness lower bounds by a factor of 2 and
completely ignore the fairness upper bounds.

Overview of Our Algorithm

First pass: Find any feasible solution

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find a solution in matroid for each

color independently.
2. Find afeasible solution by combining

these solutions.

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find asolution in matroid for each Algorithm 1 FAIR-RESERVOIR
color independently. : I.«(forallc=1,..,C

1
2. Find afeasible solution by combining 2: for each element e on the stream do
these solutions 3: Let c be the color of e
4
5

Ifl.+ecZthenl. < I.+e
: Consider the partition matroid Z¢ on V' defined in (1)
6: S < a max-cardinality subset of |J.I. in Z N Z¢
(Lemma 2.2)
7: Return S

Overview of Our Algorithm

Second pass: Improve the quality of the solution

Overview of Our Algorithm

Second pass: Improve the quality of the solution

1. Divide the solution into two so that
the lower bounds are violated by at
most a factor two.

2. Extend these two sets by adding good
elements to them without violating
upper bounds and matroid constraint.

3. Returnthe best solution.

Overview of Our Algorithm

Second pass: Improve the quality of the solution

1. Divide the solution into two so that
the lower bounds are violated by at
most a factor two. How can we do this?
2. Extend these two sets by adding good
elements to them without ViOlating — Matroid intersection
upper bounds and matroid constraint.
3. Returnthe best solution.

Overview of Our Algorithm

Algorithm 2 FAIR-STREAMING

—

: Input: Set S from FAIR-RESERVOIR and routine A
Sl — @, SQ — @
for e in S do

Let c be the color of e

1. Divide the solution into two so that if S, N V.| < |So N V| then

the lower bounds are violated by at S; < Si+e
most a factor two. else
Sy +— Sy +e

2. Extend these two sgts by ad_dmg.gOOd Define matroids Z¢, Z;, Z5 as in Equations (2) and (3)
elements to them without V|0|at|ng Run two copies of .4, one for matroids Z¢,7; and one
upper bounds and matroid constraint. for matroids Z¢, Z,, and let S} and S be their outputs

3. Return the best solution. 11: for i =1,2 do
12: forein S; do

13: Let ¢ be the color of ¢
14 If S/ N V.| < u.then S] « S/ + e
15: Return S’ = argmax(f(57), f(S%))

eI

[y

Open Directions

1. Other constraints
o Knapsack constraint

2. Single pass algorithm with efficient memory

3. Stronger impossibility results

