
Fairness in Streaming Submodular
Maximization over a Matroid Constraint

Marwa El Halabi Samsung - SAIT AI Lab, Montreal

Federico Fusco Sapienza University of Rome

Ashkan Norouzi-Fard Google Research

Jakab Tardos Google

Jakub Tarnawski Microsoft Research

Monotone Submodular Function

Ground Set

Monotone Submodular Function

Ground Set

Any set X and element e

Monotone Submodular Function

Ground Set Diminishing Returns

Any sets X, Y and element e

Monotone Submodular Function

Influence Maximization Image Summarization

Maximizing under Cardinality Constraint

Cardinality Constraint

Maximizing under Matroid Constraint

Matroid Constraint

Fair Streaming Setting
● Elements arrive on a stream.

● We have limited memory.

● Each element has a color.

● We are given lower and upper bound constraint for each color.
○ The minimum and maximum number of elements that we can pick from each color.

Fair Streaming Setting

 1 2 3 4 5 6 7 n

Find a solution such that
1. Number of blue elements in range [1, 2]
2. Number of red elements is in range [0, 3]
3. The solution belongs to a matroid

. . .

Fair Streaming Setting

 1 2 3 4 5 6 7 n

Find a solution such that
1. Number of blue elements in range [1, 2]
2. Number of red elements is in range [0, 3]
3. The solution belongs to a matroid

. . .

The bounds are not constants

Our Results

A tight -approximation
algorithm with exponential

memory

Our Results

A tight -approximation
algorithm with exponential

memory

Memory Usage

What if we want to use less memory?

Our Results

It is not possible to use efficient
memory even if we make multiple

passes

Our Results

It is not possible to use efficient
memory even if we make multiple

passes

Our Results

If we violate the lower bounds we
can get a high solution with

quadratic memory usage in two
passes over the stream

Our Results

If we violate the lower bounds we
can get a high solution with

quadratic memory usage in two
passes over the stream

Our Results

Even with more violations, it is
not possible to get efficient

algorithms.

Our Results

Even with more violations, it is
not possible to get efficient

algorithms.

Overview of Our Algorithm

First pass: Find any feasible solution

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find a solution in matroid for each
color independently.

2. Find a feasible solution by combining
these solutions.

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find a solution in matroid for each
color independently.

2. Find a feasible solution by combining
these solutions.

Overview of Our Algorithm

Second pass: Improve the quality of the solution

1. Divide the solution into two so that
the lower bounds are violated by at
most a factor two.

2. Extend these two sets by adding good
elements to them without violating
upper bounds and matroid constraint.

3. Return the best solution.

Overview of Our Algorithm

Second pass: Improve the quality of the solution

1. Divide the solution into two so that
the lower bounds are violated by at
most a factor two.

2. Extend these two sets by adding good
elements to them without violating
upper bounds and matroid constraint.

3. Return the best solution.

Overview of Our Algorithm

Second pass: Improve the quality of the solution

How can we do this?

Matroid intersection

1. Divide the solution into two so that
the lower bounds are violated by at
most a factor two.

2. Extend these two sets by adding good
elements to them without violating
upper bounds and matroid constraint.

3. Return the best solution.

Overview of Our Algorithm

Open Directions

1. Other constraints

○ Knapsack constraint

2. Single pass algorithm with efficient memory

3. Stronger impossibility results

