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Ø A set function 𝑓: 2$ → ℝ	 with diminishing return property 
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Problem
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SALSA	Algorithm

Multiple-Pass

ØExtract a small, representative subset from a big data set
𝑆∗ = arg 		max

			 0 12
𝑓(𝑆)

ØWe assume 𝑓 is submodular, monotone, and 𝑓 ∅ = 0

OPT = 2𝑘 − 1

Ø Greedy:
• Add e = arg	max	𝑓 𝑒 𝑆
• 𝑘-passes
• 	f 𝑆 ≥ OPT 1 − 1/e

ground	set			𝑉 = {																																															}

𝑓 																						 = cost,	utility,	…

𝑓 𝐴 ∪ 𝑒 − 𝑓(𝐴) 𝑓 𝐵 ∪ 𝑒 − 𝑓(𝐵)≥

∀	𝐴 ⊆ 𝐵 ⊆ 𝑉, 𝑒 ∉ 𝐵

𝐴 𝐵

Beyond	0.5 Ratio

Ø SIEVE –STREAMING:
• Add e if 	𝑓 𝑒 𝑆 ≥ TUV/WXY(0)

2X|0|
	

• 	1-pass
• 	f 𝑆 ≥ (0.5 − 𝜖)	OPT

Exemplar-based ClusteringMaximum Coverage

Experiments

Random	Streams

Ø Adaptive thresholds

ØIn many real-world scenarios the data arrives in random order.

Theorem: There exists an algorithm (SALSA) such that, for any stream of 
elements that arrive in random order, the value of the solution returned by 
SALSA is	≥ OPT	(0.5 + 𝜖)	in expectation and uses 𝑂(𝑘	log	𝑘) memory.

ØStructure of OPT
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Balanced

• 𝑓 𝑆i is large ≥ OPT 0.5 − 𝜖
Decrease  𝑇W

• 𝑆i contains  ≥ 2
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elements of OPT
Keep 𝑇W = 𝑇c
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Theorem: There exists a 1 − 1/e − 𝜖 −approximation
algorithm that uses 𝑂(1/𝜖) passes for the streaming submodular 
maximization. It uses 𝑂	(𝑘 log 𝑘 /𝜖) memory.

Ø 𝑝-pass

• Add e if 	𝑓 𝑒 𝑆 ≥ m
mnc

o
⋅ pqr
2 

• 	𝑝-pass

• 	f 𝑆 ≥ OPT ⋅ (1 − m
mnc

o
)

Theorem: Any algorithm for streaming submodular maximization that 
only queries the value of the submodular function on feasible sets (sets 
of cardinality at most 𝑘) and is > 0.5-approximation must use Ω(𝑛/k)
memory.

ØReduction from INDEX problem

𝑓 𝑆 = 𝑆 ∩ 𝑈 + ymin 𝑘, 𝑆 ∩ 𝑉 									𝑤 ∉ 𝑆	
𝑘																																			𝑤 ∈ 𝑆
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Ø What is the best achievable bound in random streams? 
Ø Hardness result under no assumption ?


