.. . . I Jh0
Efficient Algorithms for Device Placement Jakub Tarmawski, Amar Phanishayee, i® * I NEURAL INFORMATION

Nikhil Devanur, Divya Mahajan, ::,3, PROCESSING SYSTEMS

Of DNN Graph Operat()rs Fanny Nina Paravecino 0'.%‘;.

—_— > T — S ——— S S — — gp— T

How to train DNNs efficiently? Prior work - Our contributions:
Approach 1: Approach 2 (ours):
Data parallelism: » Treat objective function as black box Build cost model that closely reflects
) Replicate rn_oc_jel on every worker (e.g. measure time of 10 training steps) real performance We isolate the structured
* Train on disjoint samples « Optimize it with generic heuristics such as » Solve resulting “offline™ optimization combinatorial optimization broblem
Reinforcement Learning [Mirhoseini et al., problem with principled algorithmic P : P
But Spotlight] or MCMC [FlexFlow] techniques SN2 EOIS OF 2EVICE [RCEmEnt
) .Communicatio.n (weight resync) » Learn a placement policy and generalize to « Previously done in PipeDream, but only for for both training and inference
IS VETy expensive unseen graphs [Placeto, GDP, REGAL] linear computation graphs (i.e. path-graphs)
* SOTA models are huge - Pros: realistic-by-definition performance Challenges: And we give efficient algorithms
and don't fit on a single worker model « Formulate a correct (close-to-reality) cost to find optimal splits:
« Cons: very expensive to evaluate cost of each model
partition tried; heuristics w/o guarantees * Resulting problem is highly non-trivial
Instead use model parallelism: - L
 Partition the model : : :
. Transfer intermediate activations Dynamic Programming Approach Integer Programming Approach

that can find non-contiguous splits

between workers Objective: maximize throughput

That Is, minimize time-per-sample, which is the max load of any machine
(load = computation + communication)

Mach. 1 Mach. 2 Mach.3 Mach. 4

To get high worker utilization,

use pipelining:

* Once the first sample goes to
Machine 2, Machine 1 can start
processing the second sample,
etc.

* For training (forward + backward
pass), schedules were proposed
by PipeDream and GPipe |

A S 4

For each downward-closed set I of nodes (ideal), compute:

N LN __J N\

Output stage

DP recursion: « The green/checkered subgraph is non-contiguous
« Such splits are predicted to yield up to 27% higher

= , ; dpll, k] = ve max(dpll’, k — 1], load(I" \ 1)) throughput for some DNN workloads
VEN N N N N R A KR K : \ (I' is partitioned on k — 1 machines, I \ I’ on 1 machine) Evaluation
Machine 2 1 2 3 4 5 6 7 8 \ Notes:
Machine 3 o N EN N BN KN W - S =1\1T is acontiguous subgraph, and one gets any contiguous subgraph this way . Several modern DNN workloads
time-per-sample = max load of a machine « The function load(S) can be arbitrary, should take computation and communication (BERT, GNMT, Inception, Resnet)
Into account « We find provably optimal splits on operator-level
How to split the DNN graph? * Can setload(S) = oo If S doesn't fit on one device (O?M) o graphs, within seconds to minutes
. Runﬂm_e IS O((number of machines) - (number of ideals)~) — exponential in theory, good . Higher throughput than human experts,
« Assign every node to a machine/device In practice PipeDream, some other baselines
* Problem called device placement

« Want to balance computation out, Yields a general framework; can also handle:
but also minimize communication

« Multiple device types oo o
« Usually done by human experts;

] \ { \

« Hybrid mode with data parallelism | m | B, B, | ’d :

. : : : ! T . !

growing need for automated methods |+ Hierarchical communication costs ! . ;' ! N ;

______________ Some figures courtesy of PipeDream

https://arxiv.org/pdf/2006.16423.pdf

