
Efficient Algorithms for Device Placement

of DNN Graph Operators

How to train DNNs efficiently?

Data parallelism:

• Replicate model on every worker

• Train on disjoint samples

But:

• Communication (weight resync)

is very expensive

• SOTA models are huge

and don’t fit on a single worker

Instead use model parallelism:

• Partition the model

• Transfer intermediate activations 

between workers

To get high worker utilization,

use pipelining:

• Once the first sample goes to 

Machine 2, Machine 1 can start 

processing the second sample, 

etc.

• For training (forward + backward 

pass), schedules were proposed 

by PipeDream and GPipe

Jakub Tarnawski, Amar Phanishayee,

Nikhil Devanur, Divya Mahajan,

Fanny Nina Paravecino

How to split the DNN graph?

• Assign every node to a machine/device

• Problem called device placement

• Want to balance computation out,

but also minimize communication

• Usually done by human experts;

growing need for automated methods

Prior work
Approach 1:

• Treat objective function as black box

(e.g. measure time of 10 training steps)

• Optimize it with generic heuristics such as 

Reinforcement Learning [Mirhoseini et al., 

Spotlight] or MCMC [FlexFlow]

• Learn a placement policy and generalize to 

unseen graphs [Placeto, GDP, REGAL]

• Pros: realistic-by-definition performance 

model

• Cons: very expensive to evaluate cost of each 

partition tried; heuristics w/o guarantees

Approach 2 (ours):

• Build cost model that closely reflects

real performance

• Solve resulting “offline” optimization 

problem with principled algorithmic 

techniques

• Previously done in PipeDream, but only for 

linear computation graphs (i.e. path-graphs)

Challenges:

• Formulate a correct (close-to-reality) cost 

model

• Resulting problem is highly non-trivial

Our contributions:

We isolate the structured 

combinatorial optimization problem

at the core of device placement,

for both training and inference

And we give efficient algorithms

to find optimal splits:

Machine 1 1 2 3 4 5 6 7 8 9
Machine 2 1 2 3 4 5 6 7 8
Machine 3 1 2 3 4 5 6 7

Dynamic Programming Approach

time-per-sample = max load of a machine

Objective: maximize throughput

That is, minimize time-per-sample, which is the max load of any machine

(load = computation + communication)

For each downward-closed set 𝐼 of nodes (ideal), compute:

𝑑𝑝 𝐼, 𝑘 = min max-load if splitting 𝐼 onto 𝑘 machines

𝐼

DP recursion:

𝑑𝑝 𝐼, 𝑘 = min
𝐼′⊆𝐼, 𝐼′: 𝑖𝑑𝑒𝑎𝑙

max(𝑑𝑝 𝐼′, 𝑘 − 1 , 𝑙𝑜𝑎𝑑 𝐼′ ∖ 𝐼 )

(𝐼′ is partitioned on 𝑘 − 1 machines, 𝐼 ∖ 𝐼′ on 1 machine)

𝐼′

𝑆 = 𝐼 ∖ 𝐼′

Integer Programming Approach
that can find non-contiguous splits

• The green/checkered subgraph is non-contiguous

• Such splits are predicted to yield up to 27% higher 

throughput for some DNN workloads

Evaluation
Notes:

• 𝑆 = 𝐼 ∖ 𝐼′ is a contiguous subgraph, and one gets any contiguous subgraph this way

• The function 𝑙𝑜𝑎𝑑(𝑆) can be arbitrary, should take computation and communication

into account

• Can set 𝑙𝑜𝑎𝑑 𝑆 = ∞ if 𝑆 doesn’t fit on one device (OOM)

• Runtime is 𝑂((number of machines) ⋅ (number of ideals)2) – exponential in theory, good 

in practice

Yields a general framework; can also handle:

• Multiple device types

• Hybrid mode with data parallelism

• Hierarchical communication costs

• Several modern DNN workloads

(BERT, GNMT, Inception, Resnet)

• We find provably optimal splits on operator-level 

graphs, within seconds to minutes

• Higher throughput than human experts, 

PipeDream, some other baselines

Some figures courtesy of PipeDream

See paper at: https://arxiv.org/pdf/2006.16423.pdf

https://arxiv.org/pdf/2006.16423.pdf

