Fairness in Streaming Submodular Maximization over a Matroid Constraint
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Fair Matroid Monotone Submodular Maximization

glca‘}/c{f(S) . SeZl.<|SNV. | <ucforallc=1,---,C} (FMMSM)

Set function f : 2¥ — R is

e Monotone: for any set X and element e,
fF(X U{e}) 2 f(X)

e Submodular: foranysets X C Y andelemente
fF(XU{e}) — f(X) = f(YU{e}) — f(Y)
Matroid Z C 2Y of rank k: non-empty family of sets satisfying

e Downward-closedness: if A C Band Be€Z,then AeZ
e Augmentation: if A, B € 7 with |A| < |B|, then A + e € Z for some e € B.

Examples: uniform matroid [S| < k, partition matroid [SN V.| < u,

Streaming setting: Elements arrive on a stream and we have limited memory.

o oo koo i S

Fairness: Solution should be balanced with respect to some sensitive attribute.

e Each element has a color c encoding the sensitive attribute.

e Vs partitioned into C disjoint color groups V=V, U---U V.

o We are given alower /. and upper bound Uc (not constants) on the number
of elements we can pick from each color c.

Applications: multiwinner voting, influence maximization, data summarization

Related work

Special case of FMMSM with cardinality constraint:

e Celisetal.[2018]: tight (1 - 1/e)-approximation in centralised setting.
e ElHalabietal.[2020]: one-pass streaming algorithms with

o tight 1/2-approximation with exponential in Kk memory

o 1/4-approximation with O(k) memory

Monotone submodular maximization over two matroid constraints:
e Gargetal,[2021]: 1/5.828-approximation one-pass streaming algorithm
with O(k) memory.

Our Results

Theorem 1.1. For any constant n € (0,1/2), there exists
a one-pass streaming (1/2 — n)-approximation algorithm

for FMMSM that uses 2° (k*+k1og C) . log A memory, where

maxXecy f(e)
ming.cv|f(e)>o0} f(€)°

A tight 1/2 - approximation
algorithm with exponential
memory.

What if we want to Use Less Memory?

It is not possible to use Theorem 1.2. Any (randomized) o(+/log C)-pass stream-
efficient memory even if ing algorithm that determines the existence of a feasible

solution for FMMSM with probability at least 2/3 requires

we make multiple passes.
max(k, C)?>~°Y) memory.

If we violate the lower
bounds we can get a high
solution with quadratic
memory usage in two
passes over the stream.

Theorem 1.3. There exists a two-pass streaming algorithm |
for FMMSM that runs in polynomial time, uses O(k - C')
memory, and outputs a set S such that (i) S is independent, :
(41) it holds that |£./2| < |V.N S| < wu, for any color |
c=1,...,C, and (iii) f(S) > OPT/11.656. |

[

EV.eﬂ with more violations, ;i that determines the existence of a feasible solution for
Itis n?t pOSS'bl? to get FMMSM with probability at least 2/3, even if it is allowed
efficient algorithms. to violate the fairness lower bounds by a factor of 2 and

completely ignore the fairness upper bounds.

Empirical Results |

4 10
x10 x10
4 . 5 5 , 120 i I
i l
100
g3 S S '
G =45 = 80 l
- ;; s f; I
f2 Z = 60 :
% —+—TwoPass-Fair-Steaming % 4 E— 40 I
o1 -&-Matroid-Intersection | S o l
—*— Greedy-Fair-Streaming , . . . I
y ——Random | - 20,2 :
Q +=—t—t— ——t———— | 35 ) . s A : ) J 0 L ) . | |
50 100 150 200 25 30 35 40 45 50 55 60 50 100 150 200 I
k k k

(a) Maximum coverage (b) Exemplar clustering (¢c) Movie recommendation '

20 -

_‘é 15 - ] O, & - © ';2:
Z10- £
S5 _ f g
E WA, E
Z o z
50 100 150 200 50 100 150 200
k k k
(d) Maximum coverage (e) Exemplar clustering (f) Movie recommendation

1.
2.

1.

2.

3.

Celis, L. E., Huang, L., and Vishnoi, N. K. Multiwinner voting with fairness constraints.

Overview of Our Algorithm

First pass: Find any feasible solution

Find a solution in the matroid for each color independently.

Find a feasible solution in the union of these solutions.

Algorithm 1 FAIR-RESERVOIR

: I, <+ Qforallec=1,...C

. for each element e on the stream do

Let c be the color of ¢

Ifl.+ecZthenl. <+ I.+e¢

. Consider the partition matroid Zo on V' defined in (1)

: S < a max-cardinality subset of | J.I. in Z N Z¢
(Lemma 2.2)

7: Return S

Second pass: Improve the quality of the solution

Divide the feasible solution into two so that the lower bounds

are violated by at most a factor two.

Extend these two sets by adding good elements to them without

violating the upper bounds and the matroid constraint.
Return the best solution among the two.

How can we do this?

Matroid intersection

Algorithm 2 FAIR-STREAMING

Input: Set S from FAIR-RESERVOIR and routine A
Sl — @, SQ o @
for e in S do
Let c be the color of e
if ‘Sl M VC‘ < ’SQ M VC’ then
S1+ S +e
else
So — Sy, +e
Define matroids Z¢, Z;, Z, as in Equations (2) and (3)
Run two copies of A, one for matroids IC, 71 and one
for matroids Z¢, Z, and let S} and S} be their outputs
11: for: =1,2do
12:  forein S; do
13: Let ¢ be the color of e
14: If |SNV,| < u.then S! + S/ +¢
15: Return S’ = arg max(f(S7), f(55))
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