
Fairness in Streaming Submodular Maximization over a Matroid Constraint
Marwa El Halabi Federico Fusco Ashkan Norouzi-Fard Jakab Tardos Jakub Tarnawski

Samsung - SAIT AI Lab, Montreal Sapienza University of Rome Google Research Google Microsoft Research

Set function is

● Monotone: for any set X and element e,

● Submodular: for any sets and element e

Matroid of rank k: non-empty family of sets satisfying

● Downward-closedness:
● Augmentation:

Examples: uniform matroid |S| ≤ k, partition matroid

Streaming setting: Elements arrive on a stream and we have limited memory.

Fairness: Solution should be balanced with respect to some sensitive attribute.

● Each element has a color c encoding the sensitive attribute.
● V is partitioned into C disjoint color groups .
● We are given a lower and upper bound (not constants) on the number

of elements we can pick from each color c.

Applications: multiwinner voting, influence maximization, data summarization

Fair Matroid Monotone Submodular Maximization

(FMMSM)

Related work

 Special case of FMMSM with cardinality constraint:

● Celis et al. [2018]: tight (1 - 1/e)-approximation in centralised setting.
● El Halabi et al. [2020]: one-pass streaming algorithms with

○ tight 1/2-approximation with exponential in k memory
○ 1/4-approximation with O(k) memory

Monotone submodular maximization over two matroid constraints:
● Garg et al., [2021]: 1/5.828-approximation one-pass streaming algorithm

with O(k) memory.

 4 5 6 7 n 1 2 3

Our Results

A tight 1/2 - approximation
algorithm with exponential

memory.

What if we want to Use Less Memory?

It is not possible to use
efficient memory even if

we make multiple passes.

If we violate the lower
bounds we can get a high
solution with quadratic

memory usage in two
passes over the stream.

Empirical Results

● Greedy-Fair-Streaming: a one-pass heuristic algorithm based on the first pass of
our two-pass algorithm

Overview of Our Algorithm

First pass: Find any feasible solution

1. Find a solution in the matroid for each color independently.
2. Find a feasible solution in the union of these solutions.

Second pass: Improve the quality of the solution

1. Divide the feasible solution into two so that the lower bounds
are violated by at most a factor two.

2. Extend these two sets by adding good elements to them without
violating the upper bounds and the matroid constraint.

3. Return the best solution among the two.

How can we do this?

Matroid intersection

References
Celis, L. E., Huang, L., and Vishnoi, N. K. Multiwinner voting with fairness constraints.
In IJCAI, pp. 144–151. ijcai.org, 2018.

El Halabi, M., Mitrovic, S., Norouzi-Fard, A., Tardos, J., and Tarnawski, J. Fairness in
streaming submodular maximization: Algorithms and hardness. In NeurIPS, 2020.

Garg, P., Jordan, L., and Svensson, O. Semi-streaming algorithms for submodular

matroid intersection. In IPCO, volume 12707 of Lecture Notes in Computer

Science, pp. 208–222. Springer, 2021.

https://github.com/google-research/google-research/tree/master/fair_submodular_matroid

Even with more violations,
it is not possible to get

efficient algorithms.

