0.51-Approximation of Maximum Matching
in Sublinear n1° Time

Sepideh Mahabadi Mohammad Roghani Jakub Tarnawski
MSR Stanford, MSR intern MSR

Sublinear matching Approximation vs time tradeoff
Given: query access to undirected graph time | |
Goal: estimate size of maximum matching Y U read entire graph
Prior to our work, " " Bhattacharya, Kiss, ‘
Want: best existing 2—g!’ Saranurak [FOCS 23] '

. . 2—0(1 re g : ' .
Runtime: n?~ 1) Can’t find edges of a large matching algorithms were Behnezhad,

* High approximation ratio jp sublinear time [Parnas, Ron 07] oV close to Roghani,
n® runtime Rubinstein
* orverycloseto [STOC 24]
. o | .o & '

E_a PX Chen; Kannan,

Khanna [ICALP 20]

Behnezhad,i Roghani,
Rubinstein [EFOCS 23]

oS N A\

s | A

. Crucial tool for us: Behnez?had, Roghani,

Behnezhad, Roghani, Rubinstein [STEOC 23]

_____ Sttt ittt Rubins;tein, Saberi
n . n H oracle that, 'Behn?Zhad i‘ [SODA 23]
I | i

1 [FOCS. 21]
for a vertex v,

Adjacency list Adjacency matrix says whether v € M
in time 0(d)

Two-pass semi-streaming algorithm
that we want to simulate...

M: fixed (random greedy)

maximal matching
(RGMM)

Pass 1: construct maximal matching M

Pass 2: augment M: construct maximal b-matching B between
matched and unmatched vertices. Capacity of matched
vertices is 1, capacity of unmatched vertices is b.

Our result:

* given adjacency list access, multiplicative 0.5109-apx

* given adjacency matrix access, multiplicative-additive (0.5109, o(n))-apx
in time 0(n'>) with high probability

Return maximum matchingin M U B

[Konrad, Naidu 21]

Think b = 2

Our algorithm

Take M as-is, and augment only M’ Augment only M

(by finding b-matching B;) O R (by finding b-matching B>)

This way, both oracles operate inside G’ Only one oracle, because M is materialized
which is low-degree (can check if vertex is matched in O(1) time)

Optimizing b, this obtains

(2 —+v2) = 0.585-

approximation /
...but we can’t compute M

Challenge 1:

we cannot materialize a maximal matching in sublinear time

....... G'=G[V\V(M)] (haslow degree+/n)
Idea: we instead use the RGMM oracle of [Behnezhad 21] e | | — o7
to ask whether a vertex is matched or not. inner Apx ratio: Apx ratio:
This takes time 0(d) where d = average degree. oracle B, B,
We get solution size = We get solution size =
Then, we again use [Behnezhad 21] oracle for the b- M| + (2 =+/2)-2|M'] (2-+2)-2|Mm]
matching. When seeing edge e, to check whether e is outer
between matched and unmatched vertex, oracle Good if |[M'| large M M’ Good if |[M| large
it invokes the inner oracle.
Balancing left & right Balancing left & right
Challenge 2: gives 0.5109-apx gives 0.5109-apx
runtime = 0(d) inner oracle calls = 0(d) - 0(d) = 0(n?)
We insteac?l sjcart by spar.sifying the graph E‘Remains to analyze
and materialize a matching M runtime of left leg:
that is maximal in the subsampled subgraph: e —————— FeeteeeeesemmmmssssssssesseeessssssmmssssssssseseeieeeesesnnsssssssseeseeeereeessnnsssssEEENaNetrrrrLeLnnnnnaaaAANNNNeNAeeennRRssssssEEIIIEEEEEIIIIEERssEEELS |
Seemingly,
M =0 - 0 (1/n) outer oracle calls X O(y/n) inner oracle calls :
ForvelV: = 0(n) runtime... Challenge 4: But what if some d ./ (v) is small?
sample O (v/n) random neighbors if we had access to adjacency list of G' = G[V \ V(M)]. ’

for sampled w: (Then overhead is O(n), so we’re back to 0(n?)?)

add (v,w) to M if possible Challenge 3: But we don’t.

Retrieving full adjacency list of a vertex costs O(n).

Q\low M: some non-maximal matching in G (with O(1)-time access)) So we're back to 0(n2)? Key property 2 of RGMM oracle:

it visits every vertex proportionally to its degree

Now: unmatched graph G' = G[V \ V(M)] has degree < +/n w.h.p.

Key property 1 of RGMM oracle:

[Mahabadi, Roghani, Vakilian, Tarnawski 25]

at each step, it needs a random neighbor of some vertex
Next, we extend M to maximal matching M U M’

where M’ will be accessed via inner oracle. inner Expected number of samples from adjacency list of v in G So the total runtime finally looks like:

oracle to get neighbor in G’ is at most ™ d s (v) :
And try to augment M U M’ with a b-matching... 5o if we had all degrees in G’ equal to d, V- z dgr (V) o N
then: 0(d) - 0(d) - 0(™/;) = 0(nd) = 0(n/n), great. el dg (v)
But still, M Y Y

outer inner gverhead

avg degree between M U M’ and complement can be 0(n),
so we would still be at 0(n?) in worst case

http://www.facebook.com/pages/PosterPresentationscom/217914411419?v=app_4949752878&ref=ts

	Slide 1

